\(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

\(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)\left(1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\left(2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{5}x-\sqrt{15}+\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{5}x-\sqrt{15}+\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}\left(\sqrt{5}x-\sqrt{15}+\sqrt{5}\right)=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{5}x-\sqrt{15}+\sqrt{5}\\x\left(15+2\sqrt{3}\right)=6+15\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3}\\y=\sqrt{5}\end{matrix}\right.\)

3 tháng 4 2020

ít nhất phải đánh ra thế này chớ ( thiếu kết luận bước cuối giải hệ phương trình trừ điểm : ))

2 tháng 4 2020

Đề sai

2 tháng 4 2020

Đề sai

Đề sai

Đề sai

Đề sai

Đề sai

Đề sai

Đề sai

Đề sai

Đề sai

Đề sai

28 tháng 11 2019

a/\(\left\{{}\begin{matrix}\sqrt{5}-y=\sqrt{5}\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15x-3\sqrt{5}=15\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)

\(\Leftrightarrow15x+2\sqrt{3}x=15\left(\sqrt{3}-1\right)+21=15\sqrt{3}+6\)

\(\Leftrightarrow x=\frac{15\sqrt{3}+6}{15+2\sqrt{3}}=\sqrt{3}\)

\(\Rightarrow y=\sqrt{5}\)

Kết luận nghiệm pt: \(\left\{{}\begin{matrix}x=\sqrt{3}\\y=\sqrt{5}\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}7x=4y\\x-y+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x-4y=0\\7x-7y+21=0\end{matrix}\right.\)

\(\Leftrightarrow\left(7x-4y\right)-\left(7x-7y+21\right)=0\)

\(\Leftrightarrow3x-21=0\Leftrightarrow x=7\)

\(\Rightarrow y=4\)

Kết luận nghiệm pt: \(\left\{{}\begin{matrix}x=7\\y=4\end{matrix}\right.\)

28 tháng 11 2019

áp dụng phương pháp thế nhé bạn.

16 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

14 tháng 12 2019

\(\left\{{}\begin{matrix}4x+5y=3\\x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4\left(5+3y\right)+5y=3\\x=5+3y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}20+12y+5y=3\\x=5+3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}20+17y=3\\x=5+3y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}17y=-17\\x=5+3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

29 tháng 9 2019

*Công thức: Biến đổi x theo y và ngc lại và dùng các quy tắc.

a)\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\left(1\right)\end{matrix}\right.\)

Cộng 2 pt ta đc: x=1

Thay vào (1):\(\Leftrightarrow y=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)

Vậy (x;y)\(=\left(1;\frac{\sqrt{6}}{3}\right)\)

Những câu sau làm ttự.

#Walker

24 tháng 3 2020

ủa nhưng khi thay x,y vào phương trình đầu tiên thì kết quả không bằng 1 ?limdim

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0
13 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)

=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75

=>x=7; y=5

b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)

=>4x+9y=8 và -8x+3y=5

=>x=-1/4; y=1

c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)

=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5

=>2x-3y=-5,5 và 3x-2y=-4,5

=>x=-1/2; y=3/2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)

=>\(x=\sqrt{2};y=\sqrt{3}\)

31 tháng 10 2019

1/PT (1) cho ta nhân tử x - y - 1:)

\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)

ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)

PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)

Dễ thấy cái ngoặc to < 0

Do đó x= y + 1

Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)

ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)

PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)

\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)

Cái ngoặc to > 0 =>...

P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(

31 tháng 10 2019

2/ĐK: \(x\ge-y;y\ge0\)

PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)

Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).

Do đó x = y \(\ge0\)

Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)

Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)

Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)

P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((