K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2022

\(hpt\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\5yz=6\left(y+z\right)\\4zx=3\left(x+z\right)\end{matrix}\right.\)\(\Rightarrow x=y=z=0\) \(là\) \(nghiệm\)

\(x=y=z\ne0\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2\left(x+y\right)}{2xy}=\dfrac{3xy}{2xy}\\\dfrac{6\left(y+z\right)}{6yz}=\dfrac{5yz}{6yz}\\\dfrac{3\left(x+z\right)}{3zx}=\dfrac{4xz}{3zx}\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{6}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{4}{3}\end{matrix}\right.\)\(ddặt\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\b+c=\dfrac{5}{6}\\a+c=\dfrac{4}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1=\dfrac{1}{x}\Leftrightarrow x=1\left(tm\right)\\b=\dfrac{1}{2}=\dfrac{1}{y}\Leftrightarrow y=2\left(tm\right)\\c=\dfrac{1}{3}\Leftrightarrow z=3\left(tm\right)\end{matrix}\right.\)

 

16 tháng 2 2022

TK

Hệ có nghiệm là x = y = z = 0

Với xyz ≠ 0 thì (I) được viết lại

\(\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{5}{6}\\\dfrac{z+x}{zx}=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left(II\right)\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{6}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{4}{3}\end{matrix}\right.\)

Cộng 3 phương trình của hệ (II) theo vế ta được

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{11}{3}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{11}{6}\)

Trừ phương trình trên cho từng phương trình của hệ (II) theo vế ta lần lượt có \(x=1,y=2,z=3\)

Vậy hệ phương trình có hai nghiệm \(\left(0;0;0\right)\&\left(1;2;3\right)\)

a: Sửa đề: 

\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\4yz=3\left(y+z\right)\\5xz=6\left(z+x\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{4}{3}\\\dfrac{x+z}{xz}=\dfrac{5}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{4}{3}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{3}{2}\\\dfrac{1}{y}=1\\\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{2}{3};y=1;z=3\)

b: Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{7x-3y+2z}{7\cdot4-3\cdot3+2\cdot9}=\dfrac{37}{37}=1\)

=>x=4; y=3; z=9

 

2 tháng 2 2021

pt sau của bạn bị thiếu thì phải

 

NV
15 tháng 11 2019

Nhận thấy \(x=y=z=0\) là 1 nghiệm

Với \(x;y;z\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=\frac{5}{12}\\\frac{1}{y}+\frac{1}{z}=\frac{5}{18}\\\frac{1}{z}+\frac{1}{x}=\frac{13}{36}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}=\frac{1}{4}\\\frac{1}{y}=\frac{1}{6}\\\frac{1}{z}=\frac{1}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=9\end{matrix}\right.\)

Vậy hệ có 2 bộ nghiệm \(\left(x;y;z\right)=\left(0;0;0\right);\left(4;6;9\right)\)

3 tháng 11 2017

\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\4yz=3\left(y+z\right)\\5zx=6\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{4}{3}\\\dfrac{z+x}{zx}=\dfrac{5}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{4}{3}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{5}{6}\end{matrix}\right.\)

Đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b;\dfrac{1}{z}=c\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\b+c=\dfrac{4}{3}\\a+c=\dfrac{5}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\\c=\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\\z=3\end{matrix}\right.\)

Vậy . . .

5 tháng 11 2017

Thiếu nghiệm (0;0;0) rồi bé Phương An

30 tháng 11 2016

TH1: x=0

TH2: x khác 0 thì y,z khác 0

VT là bậc hai theo 2 biến, VP là bậc nhất theo các biến tương ứng. Do đó chia pt cho 2 biến tương ứng theo VT. cụ thể pt đầu chia cho xy, pt 2 chia cho yz, pt 3 chia cho zx

ta quy về đươc pt 3 ẩn giải được

còn lại em tự giải nhé

AH
Akai Haruma
Giáo viên
7 tháng 1 2022

Lời giải:
$x,y,z>0$ thì $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ mới xác định.

Áp dụng BĐT AM-GM:

$(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\geq 3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9$

Dấu "=" xảy ra khi $x=y=z$. Thay vào pt $(2)$:

$x^3=x^2+x+2$

$\Leftrightarrow x^3-x^2-x-2=0$

$\Leftrightarrow x^2(x-2)+x(x-2)+(x-2)=0$

$\Leftrightarrow (x^2+x+1)(x-2)=0$
Dễ thấy $x^2+x+1>0$ với mọi $x>0$ nên $x-2=0$

$\Rightarrow x=2$
Vậy hpt có nghiệm $(x,y,z)=(2,2,2)$