Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
ĐKXĐ: \(x;y\)\(\ge\)0
Biến đổi phương trình thứ nhất ta có \(y-2x+\sqrt{y}-\sqrt{x}+\sqrt{xy}=0\Leftrightarrow y-x+\sqrt{y}-\sqrt{x}-x+\sqrt{xy}=0\)
\(\Leftrightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)+\left(\sqrt{y}-\sqrt{x}\right)+\sqrt{xy}-\sqrt{x}=0\)
\(\Leftrightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)+\left(\sqrt{y}-\sqrt{x}\right)+\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+2\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{y}-\sqrt{x}=0\Leftrightarrow x=y\\\sqrt{y}+2\sqrt{x}+1=0\end{cases}}\)Mặt khác \(\sqrt{y}+2\sqrt{x}+1\ge1>0\forall x;y\)
\(\Rightarrow\)vô nghiệm
Thay x=y vào phương trình thứ hai rồi tự tính tiếp nha bạn coa nghiệm x=y=1
\(\hept{\begin{cases}\sqrt{x-1}+\sqrt{y-1}=3\left(1\right)\\xy+x+y=x^2-2y^2\left(2\right)\end{cases}}\)
(ĐK : x,y \(\ge\)1)
Biến đổi pt (2) ta được :
xy + x + y = x2 - 2y2
<=>2y2 + xy + y =x2 - x
biến đổi vế phải ta có : \(\Delta=b^2-4ac=1\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{b-\sqrt{\Delta}}{2}=y\\\frac{b+\sqrt{\Delta}}{2}=y\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\left(loại\right)\\y=1\end{cases}}\)
thế y = 1 vào pt (1) ta được :
\(\sqrt{x-1}+\sqrt{1-1}=3\Leftrightarrow x-1=3\Leftrightarrow x=10\)
vậy pt có cặp nghiệm (x,y) là ( 10,1 )
* cái dạng này có trong đề thi hsg toán 10 nha , lên cấp 2 nhiều dạng này á :3 *
điều kiện y2\(\ge1< =>y\ge1\)hoặc \(y\le-1\)
\(x+\sqrt{x^2+1}=y+\sqrt{y^2-1}\)=>\(x-y=\sqrt{y^2-1}-\sqrt{x^2+1}\)=>\(x^2+y^2-2xy=y^2-1+x^2+1-2\sqrt{\left(y^2-1\right)\left(x^2+1\right)}\)=>\(xy=\sqrt{\left(y^2-1\right)\left(x^2+1\right)}\)
=>\(\hept{x^2y^2=\left(y^2-1\right)\left(x^2+1\right)}\)=>\(y^2=x^2+1\).
ta có hệ \(\hept{\begin{cases}y^2=x^2+1\\x^2+y^2-xy=1\end{cases}< =>\hept{\begin{cases}y^2=x^2+1\\2x^2-xy=0\end{cases}}}\)<=>\(\hept{\begin{cases}y^2=1+x^2\\x\left(2x-y\right)=0\end{cases}}\)
<=>\(\hept{\begin{cases}y^2=1+x^2\\x=0\end{cases}}\)hoặc \(\hept{\begin{cases}2x-y=0\\y^2=x^2+1\end{cases}}\)<=> \(\hept{\begin{cases}x=0\\y=\pm1\end{cases}}\)Hoặc \(\hept{\begin{cases}x=\frac{1}{\sqrt{3}}\\y=\frac{2}{\sqrt{3}}\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-1}{\sqrt{3}}\\y=\frac{-2}{\sqrt{3}}\end{cases}}\)
thay các nghiệm trên vào hệ phương trình ta thấy (x;y)=(0;-1) và (x;y)=(\(\frac{-1}{\sqrt{3}};\frac{-2}{\sqrt{3}}\)) không thỏa mãn
vậy hệ có 2 nghiệm (x;y)= (0;1); (x;y)=(\(\frac{1}{\sqrt{3}};\frac{2}{\sqrt{3}}\))