Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ tương đương với: \(\hept{\begin{cases}xy+x+y=7\\x^2+y^2+x+y+xy=7\end{cases}}\)
Đặt \(x+y=a;xy=b\)ta có: \(x^2+y^2=a^2-2b\)
Thay vào hệ ta có:
\(\hept{\begin{cases}b+a=7\\a^2-b+a=17\end{cases}}\)
\(\Rightarrow a^2+2a+1=25\Rightarrow a+1^2=25\)
Đến đây tìm a,b sau đó ta tìm được:
(x,y)=(1,3);(3,1)
Hệ đã cho tương ứng với :
\(\hept{\begin{cases}x+y+xy=7\\\left(x+y\right)^2-xy+x+y=17\end{cases}}\)
Đătl \(x+y=S;xy=P\) , giải hệ trên ta được : \(\hept{\begin{cases}S=4\\P=3\end{cases}}\)hoặc \(\hept{\begin{cases}S=-6\\P=13\end{cases}}\)
Thep định lí Vi-ét đảo thì x , y là các nghiệm của phương trình:
\(t^2-4t+3=0\) hoặc \(t^2+6t+13=0\)
Từ đó được 2 nghiệm của hệ là :
\(\left(x;y\right)\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)
\(\hept{\begin{cases}\left(x-y\right)^2+y^2=25\\\left(x+y\right)^2+x^2=26\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-2xy+y^2+y^2=25\\x^2+2xy+y^2+x^2=26\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x^2+3y^2=1\\\left(x-y\right)^2+x=26\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=\frac{1}{3}\\\left(x-y\right)^2+x=26\end{cases}}\)
dấu # là dấu gì
hả bn?
mk ko biết là dấu gì hết?
chúc bn học giỏi
ahjhj
\(pt\Leftrightarrow\hept{\begin{cases}\frac{1}{2}xy+\frac{3}{2}x+y+3=\frac{1}{2}xy+50\\\frac{1}{2}xy-x-y+2=\frac{1}{2}xy-32\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{3}{2}x+y=47\\-x-y=-34\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=26\\y=8\end{cases}}\)
Vậy pt có một nghiệm duy nhất (x;y) = (26;8).
\(\left(1\right)\Rightarrow\orbr{\begin{cases}x=y\\x=y-2\end{cases}}\)
\(\left(2\right)\Rightarrow4y^3=1\Rightarrow x=y=\sqrt[3]{\frac{1}{4}}\) Hoặc \(4y\left(y-1\right)=1\Rightarrow\left(y-\frac{1}{2}\right)^2=\frac{1}{2}\Rightarrow\orbr{\begin{cases}y=\frac{1-\sqrt{2}}{2}\\y=\frac{1+\sqrt{2}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-3-\sqrt{2}}{2}\\\frac{-3+\sqrt{2}}{2}\end{cases}}\)