Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+xy=7\\x^2+y^2+x+y+xy=17\end{cases}}\)
Dat \(\hept{\begin{cases}xy=P\\x+y=S\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}S+P=7\\S^2+S-P=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+S-\left(7-S\right)=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+2S=24\end{cases}}\)
\(\hept{\begin{cases}S=-6\\P=13\\S=4;P=3\end{cases}}\)
b)
\(\hept{\begin{cases}x+y+z=0\left(1\right)\\2x+3y+z=0\left(2\right)\\\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^3=26\left(3\right)\end{cases}}\)
Từ (1), (2) suy ra:
\(\hept{\begin{cases}x=-2y\\z=y\end{cases}}\)
Thê vô (3) ta được:
\(\left(-2y+1\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)
\(\Leftrightarrow y^3+14y^2+27y+6=0\)
\(\Leftrightarrow\left(y+2\right)\left(y^2+12y+3\right)=0\)
\(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm (nếu 1 nghiệm =0 thì 2 nghiệm còn lại cũng =0)
Với \(x;y;z\ne0\Rightarrow\left\{{}\begin{matrix}\frac{1}{x^2}=\frac{1}{y}+1\\\frac{1}{y^2}=\frac{1}{z}+1\\\frac{1}{z^2}=\frac{1}{x}+1\end{matrix}\right.\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=b+1\\b^2=c+1\\c^2=a+1\end{matrix}\right.\) \(\Rightarrow a;b;c\ge-1\)
- Nếu \(a>0\Rightarrow c^2>1\Rightarrow c>1\Rightarrow b^2>2\Rightarrow b>1\) \(\Rightarrow a;b;c>0\)
Không mất tính tổng quát, giả sử \(a=max\left\{a;b;c\right\}\)
\(\Rightarrow a+1\ge b+1\Rightarrow c^2\ge a^2\Rightarrow c\ge a\Rightarrow c=a\)
\(\Rightarrow a+1=b+1\Rightarrow a=b\)
\(\Rightarrow a=b=c\Rightarrow a^2=a+1\Rightarrow a^2-a-1=0\)
\(\Rightarrow a=b=c=\frac{1+\sqrt{5}}{2}\Rightarrow x=y=z=\frac{\sqrt{5}-1}{2}\)
- Tương tự nếu \(-1\le a\le0\Rightarrow-1\le a;b;c\le0\)
Giả sử \(a=max\left\{a;b;c\right\}\Rightarrow a^2\le c^2\Rightarrow a+1\le b+1\Rightarrow a=b\)
\(\Rightarrow b+1=c+1\Rightarrow b=c\Rightarrow a=b=c\)
\(\Rightarrow a^2=a+1\Rightarrow a^2-a-1=0\Rightarrow a=b=c=\frac{\sqrt{5}-1}{2}\)
\(\Rightarrow x=y=z=\frac{\sqrt{5}+1}{2}\)
Vậy nghiệm của hệ là \(x=y=z=\frac{\sqrt{5}\pm1}{2}\)
Nhận xét: Nếu hệ có nghiệm thì nghiệm đó phải thoả \(x,y,z\ge0\).
------
Kí hiệu hàm số \(f\left(x\right)=\frac{2x^2}{x^2+1}\).
Giả sử \(0\le x\le y\) (\(x,y\) này ko liên quan đến hệ). Khi đó ta phát biểu \(f\left(x\right)\le f\left(y\right)\) và biến đổi tương đương thì thấy đúng.
------
Quay lại hệ. Viết lại hệ dưới dạng: \(\hept{\begin{cases}x=f\left(z\right)\\y=f\left(x\right)\\z=f\left(y\right)\end{cases}}\)
Do hệ là bất biến theo phép hoán vị vòng quanh nên ko mất tính tổng quát chỉ cần xét 2 trường hợp:
Trường hợp 1: \(0\le x\le y\le z\). Khi đó theo CM trên thì \(f\left(x\right)\le f\left(y\right)\le f\left(z\right)\) hay \(y\le z\le x\).
Vậy \(x=y=z\) trong trường hợp này.
Trường hợp 2: \(0\le x\le z\le y\). Khi đó theo CM trên thì \(f\left(x\right)\le f\left(z\right)\le f\left(y\right)\) hay \(y\le x\le z\).
Vậy \(x=y=z\) trong trường hợp này.
Tổng hợp lại, trong cả 2 trường hợp ta chỉ cần giải MỘT pt đó là \(\left(x^2+1\right)x=2x^2\).
Pt có nghiệm \(x=0,x=1\).
Vậy \(x=y=z=0,x=y=z=1\) là 2 nghiệm của hệ.
\(HPT\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{y}+\frac{1}{z}\right)^2=3+\frac{1}{x}+\frac{1}{x^2}\\..\\...\end{cases}}\)
đến đây cộng vế 3 PT ta sẽ tính được \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) khi đó thay vào PT đầu giải
Xét (x,y,z)=(0,0,m),(0,n,0),(p,0,0) là nghiệm của hệ(m,n,p\(\in\)R)
Xét xyz\(\ne\)0
hpt\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{y}+\frac{1}{z}\right)^2\\\left(\frac{1}{z}+\frac{1}{x}\right)^2\\\left(\frac{1}{x}+\frac{1}{y}\right)^2\end{cases}}\)
Đặt\(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)
hệ tt
\(\hept{\begin{cases}a^2+a+3=\left(b+c\right)^2\\b^2+b+4=\left(c+a^2\right)\\c^2+c+5=\left(a+b\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a+b+c+\frac{1}{2}\right)\left(b+c-a-\frac{1}{2}\right)=\frac{11}{4}\\\left(a+b+c+\frac{1}{2}\right)\left(c+a-b-\frac{1}{2}\right)=\frac{15}{4}\\\left(a+b+c+\frac{1}{2}\right)\left(a+b-c-\frac{1}{2}\right)=\frac{19}{4}\end{cases}}}\)
đặt rồi tự giải tiếp