Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân pt (2) vs 3 sau đó cộng pt (1) vs (2) ta đc
\(\left\{{}\begin{matrix}x^3+3xy^2=-46\\x^3+3xy^2+3x^2-24xy+3y^2=24y-51x-46\end{matrix}\right.\)
bây h ta chú ý tới pt dưới
\(x^3+3xy^2+3x^2-24xy+3y^2-24y+51x+46=0\)
\(\left(x+1\right)\left(x^2+2x+3y^2-24y+49\right)=0\)
\(\left(x+1\right)\left[\left(x+1\right)^2+3\left(y-4\right)^2\right]=0\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\x^3+3xy^2=-49\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\end{matrix}\right.\rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\end{matrix}\right.\)
vậy hệ có 2 nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}x^3+3xy^2=-49\\3x^2-24xy+3y^2=24y-51x\end{matrix}\right.\)
Cộng vế:
\(x^3+3x^2+3y^2\left(x+1\right)-24y\left(x+1\right)+51x+49=0\)
\(\Leftrightarrow\left(x+1\right)^3+3y^2\left(x+1\right)-24y\left(x+1\right)+48\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+3\left(x+1\right)\left(y-4\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)^2+3\left(y-2\right)^2\right]=0\)
x2-3xy+x=2y-2y2
<=>x2-3xy+2y2=2y-x
<=>(x-2y)(x-y)=2y-x
<=>(x-2y)(x-y+1)=0
đến đây thay vào pt 2 là ra
\(\hept{\begin{cases}x^2-4xy+y^2=3\left(1\right)\\y^2-3xy=2\left(2\right)\end{cases}}\)
-rút 2 biểu thức cùng bằng y2, đem 2 biểu thức đó trừ với nhau được: -x2+xy+1=0(b)
-Nhân (1) với 3, nhân (2) với 4. rút ra đc 2 biểu thức cùng bằng -12xy, đem 2 biểu thức đó trừ với nhau được : 1-3x2+y2=0(a)
trừ vế theo vế, có: (b)-(a)=2x2+xy-y2=0 =>(x2-y2)+(x2+xy)=0=> (x+y).(x-y)+x.(x+y)=0 => (x+y).(x-y+x)=0
=> (x+y).(2x-y)=0
tự làm tiếp