K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

Ta có: \(\sqrt{8x-y+5}+\sqrt{x+y-1}=3\sqrt{x}+2\)

\(\Leftrightarrow8x-y+5+x+y-1+2\sqrt{\left(8x-y+5\right)\left(x+y-1\right)}=9x+12\sqrt{x}+4\)

\(\Leftrightarrow9x+4+2\sqrt{8x^2-y^2+7xy-3x+6y-5}=9x+4+12\sqrt{x}\)

\(\Leftrightarrow\sqrt{8x^2-y^2+7xy-3x+6y-5}=6\sqrt{x}\)

\(\Leftrightarrow8x^2-y^2+7xy-3x+6y-5=36x\)

\(\Leftrightarrow8x^2-y^2+7xy-39x+6y-5=0\)

\(\Leftrightarrow\left(8x^2+8xy-40x\right)-y^2-xy-5+x+6y=0\)

\(\Leftrightarrow8x\left(x+y-5\right)-\left(y^2+xy-5y\right)+\left(x+y-5\right)=0\)

\(\Leftrightarrow\left(x+y-5\right)\left(8x-y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5-x\\y=8x+1\end{cases}}\)

Thay vào pt dưới ta có:

\(\sqrt{xy}+\frac{1}{\sqrt{x}}=\sqrt{8x-y+5}\left(1\right)\)

+) với y=5-x (1) thành:

\(\sqrt{x\left(5-x\right)}+\frac{1}{\sqrt{x}}=\sqrt{8x-\left(5-x\right)+5}\)

\(\Leftrightarrow\sqrt{5x-x^2}+\frac{1}{\sqrt{x}}=\sqrt{9x}\)\(\Leftrightarrow\sqrt{5x^2-x^3}+1=3x\)\(\Leftrightarrow\sqrt{5x^2-x^3}=3x-1\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\5x^2-x^3=9x^2-6x+1\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\x^3+4x^2-6x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{1}{3}\\x=1\left(tm\right)\end{cases}}}\)

Với x=1=>y=4

22 tháng 5 2016

1. \(\begin{cases}x+y+xy\left(2x+y\right)=5xy\\x+y+xy\left(3x-y\right)=4xy\end{cases}\) \(\Leftrightarrow\begin{cases}2y-x=1\\x+y+xy\left(2x+y\right)=5xy\end{cases}\) (trừ 2 vế cho nhau)

\(\Leftrightarrow\begin{cases}x=2y-1\\\left(2y-1\right)+y+\left(2y-1\right)y\left(4y-2+y\right)=5\left(2y-1\right)y\end{cases}\) \(\Leftrightarrow\begin{cases}x=2y-1\\10y^3-19y^2+10y-1=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\)

23 tháng 5 2016

mk ra câu 1 r b lm giúp mk câu 2,3 đc k

 

5 tháng 1 2020

\(\text{Condition}:x,y\ge0\)

\(\hept{\begin{cases}x^2+2x=4-\sqrt{y}\left(M_1\right)\\y^2+2y=4-\sqrt{x}\left(M_2\right)\end{cases}}\)

\(\left(M_1\right)-\left(M_2\right)\Leftrightarrow\left(x^2-y^2\right)+2\left(x-y\right)+\left(\sqrt{x}-\sqrt{y}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+2\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)+2\left(\sqrt{x}+\sqrt{y}\right)+1=0\left(M_3\right)\end{cases}}\)

x=0 khong phai nghiem PT\(\Rightarrow M_3\)(fail)

Thay x=y vao 

:D