Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhâ vế 1 vs 2
nhân vế 2 vs 3 là ra thôi bn
trừ 2 vế cho nhau nữa
\(\left\{{}\begin{matrix}3x+2y=4\\2x-3y=7\end{matrix}\right.< =>\left\{{}\begin{matrix}6x+4y=8\\6x-9y=21\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}13y=-13\\3x+2y=4\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-1\\3x=4+2=6\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
a) \(\hept{\begin{cases}x+3y=4\left(1\right)\\2x+5y=7\left(2\right)\end{cases}}\)
Nhân cả hai vế ở phương trình (1) với 2 ta được \(2x+6y=8\)(3)
Lấy (3) - (2) ta được \(y=1\)
Từ đó suy ra x = 4 - 3 . 1 = 4 - 3 = 1
Vậy x = y = 1
Để vậy mình nhầm cũng ra được là x=3va y=1 cần minh giải giúp thì nhớ nhé
\(\Leftrightarrow\hept{\begin{cases}5x=15\\3x-5y=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\3.3-5y=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Vậy:..
Giải:
Lấy \(2x\left(1\right)-\left(2\right)\Rightarrow x^2+2xy+y^2-4y-4x+4=0\)
\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)+4=0\Leftrightarrow x+y=2\)
Giải ra được hệ phương trình có nghiệm duy nhất là \(\left(1;1\right)\)
Câu hỏi của Pham Hoàng Lâm - Toán lớp 9 - Học toán với OnlineMath
\(\left\{{}\begin{matrix}2x-2y=-4\\x+2y=-1\end{matrix}\right.\)
⇒ \(3x=-5\)
⇒ \(x=-\dfrac{5}{3}\)
\(a,\left\{{}\begin{matrix}2x-2y=-4\\x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2y+x+2y=\left(-4\right)+\left(-1\right)\\x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=-5\\x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\-\dfrac{5}{3}+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\2y=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}3x+5y=11\\2x+5y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=11\\3x+5y-2x-5y=11-9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3.2+5y=11\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6+5y=11\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=5\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)