K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 12 2021

\(x^3-y^6+y^2\left(x-y^2\right)=0\)

\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4\right)+y^2\left(x-y^2\right)=0\)

\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4+y^2\right)=0\)

\(\Leftrightarrow y^2=x\)

Thế xuống pt dưới:

\(2\sqrt{x^2+1}+\dfrac{1}{x^2+1}=3-4x^3\)

Ta có: \(x=y^2\ge0\Rightarrow VP=3-4x^3\le3\)

\(VT=2\sqrt{x^2+1}+\dfrac{1}{x^2+1}=\sqrt{x^2+1}+\sqrt{x^2+1}+\dfrac{1}{x^2+1}\ge3\sqrt[3]{\dfrac{x^2+1}{x^2+1}}=3\)

Đẳng thức xảy ra khi và chỉ khi \(x=0\Rightarrow y=0\)

Vậy \(\left(x;y\right)=\left(0;0\right)\) là nghiệm duy nhất của hệ

5 tháng 12 2021

thế \(x^2+xy^2+y^4+y^2=0\) thì sao ạ

NV
12 tháng 12 2020

1.

ĐKXĐ: ....

\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-1=xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x-\dfrac{1}{x}=y\end{matrix}\right.\)

Trừ vế cho vế: \(\Rightarrow x=\dfrac{1}{y}\Rightarrow xy=1\)

Thay xuống pt dưới: \(2x^2-2=0\Leftrightarrow x^2=1\Leftrightarrow...\)

 

NV
12 tháng 12 2020

2.

Với \(y=0\) không phải nghiệm

Với \(y\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}4x^3+1=\dfrac{3}{y}\\3x-1=\dfrac{4}{y^3}\end{matrix}\right.\)

Cộng vế với vế:

\(4x^3+3x=4\left(\dfrac{1}{y}\right)^3+3\left(\dfrac{1}{y}\right)\)

\(\Leftrightarrow4\left(x^3-\dfrac{1}{y^3}\right)+3\left(x-\dfrac{1}{y}\right)=0\)

\(\Leftrightarrow4\left(x-\dfrac{1}{y}\right)\left(x^2+\dfrac{x}{y}+y^2\right)+3\left(x-\dfrac{1}{y}\right)=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{y}\right)\left(4x^2+\dfrac{4x}{y}+\dfrac{4}{y^2}+3\right)=0\)

\(\Leftrightarrow x-\dfrac{1}{y}=0\Leftrightarrow y=\dfrac{1}{x}\)

Thế vào pt đầu:

\(4x^3+1=3x\)

\(\Leftrightarrow4x^3-3x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)^2=0\)

\(\Leftrightarrow...\)

NV
27 tháng 2 2021

ĐKXĐ: ...

Xét pt đầu: \(\Leftrightarrow\dfrac{x^2-2xy+y^2-1}{xy}-2+\dfrac{2}{x+y}+4=0\)

\(\Leftrightarrow\dfrac{x^2+y^2-1}{xy}+\dfrac{2}{x+y}=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2-1\right)+2xy=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-1\right)+x^2+y^2-1+2xy=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-1\right)+\left(x+y\right)^2-1=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-1\right)+\left(x+y-1\right)\left(x+y+1\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2+x+y\right)=0\)

Từ ĐKXĐ \(x+y-1\ge0\Rightarrow x+y\ge1\Rightarrow x^2+y^2+x+y>0\)

\(\Rightarrow x+y-1=0\Rightarrow y=1-x\)

Thế xuống pt dưới:

\(4x^2-5x+5+6\sqrt{x}=13\)

\(\Leftrightarrow4x^2-4x+1-x+6\sqrt{x}-9=0\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(\sqrt{x}-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\sqrt{x}-3\\2x-1=3-\sqrt{x}\end{matrix}\right.\)

\(\Leftrightarrow...\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2020

Bạn tham khảo lời giải tại link sau:

Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến

NV
28 tháng 1 2021

a.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)

NV
28 tháng 1 2021

b.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)

24 tháng 9 2023

loading...