K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

\(a,\hept{\begin{cases}x^2-3y=2\\9y^2-8x=8\end{cases}}\)

\(x^2-3y=2\)

\(y=\frac{1^2-2}{3}\)

\(9-\left(\frac{x^2-2}{3}\right)^2-8x=8\)

\(\Rightarrow x^4-4x^2+4-8x-8=0\)

\(\Rightarrow x^4-4x^2-8x-4=0\)

\(\Rightarrow\left(x^2-2x-2\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{2+2\sqrt{3}}{3}\\y=\frac{2-2\sqrt{3}}{3}\end{cases}}\)

Vậy ................................

14 tháng 11 2017
Chịu
11 tháng 1 2022

google xin tài trợ chương trình

31 tháng 10 2018

Ôi trời nhiều thía ? làm từng câu một ha !

\(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)

31 tháng 10 2018

b, ĐKXĐ \(x\ne\pm y\)

Đặt \(\frac{1}{x+y}=a\)  và  \(\frac{1}{x-y}=b\)(a và b khác 0)

Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)

          \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)

      \(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)

   \(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)

14 tháng 11 2019

1.

\(ĐK:x\ne0\)

HPT

\(\Leftrightarrow\hept{\begin{cases}2x\left(x+y\right)-3x+1=0\\3x\left(x+y\right)-x-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x\left(x+y\right)-\frac{9}{2}x+\frac{3}{2}=0\left(1\right)\\3x\left(x+y\right)-x-2=0\left(2\right)\end{cases}}\)

\(\left(1\right)-\left(2\right)\Leftrightarrow\frac{7}{2}x=\frac{7}{2}\)

\(\Leftrightarrow x=1\left(3\right)\)

\(\left(1\right),\left(3\right)\Rightarrow3\left(1+y\right)-3=0\)

\(\Leftrightarrow y=0\)

Vay nghiem cua HPT la \(\left(1;0\right)\)

21 tháng 5 2019

Cách này có được không ạ?Em không chắc đâu nha!

ĐKXĐ: \(x\ne-1;y\ne0\)

\(HPT\Leftrightarrow\hept{\begin{cases}\frac{3y-2x}{x+1}-\frac{2x}{y}=2\\\frac{2\left(3y+2x\right)}{x+1}+\frac{2x}{y}+1=8\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{3y}{x+1}-\frac{2x}{y}-\frac{2x}{x+1}=2\\\frac{2\left(3y+2x\right)}{x+1}+\frac{2x}{y}=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3y}{x+1}-\frac{2x}{y}-\frac{2x}{x+1}=2\\2.\frac{3y}{x+1}+\frac{2x}{y}+2.\frac{2x}{x+1}=7\end{cases}}\). Đặt \(\frac{3y}{x+1}=a;\frac{2x}{y}=b;\frac{2x}{x+1}=c\)

Hệ phương trình trở thành: \(\hept{\begin{cases}a-b-c=2\\2a+b+2c=7\end{cases}}\)(*).Cộng theo vế hai phương trình của hệ:

\(3a+c=9\Leftrightarrow c=9-3a\)(1).Thay vào cả hai phương trình của hệ (*)

Hệ phương trình tương đương với \(\hept{\begin{cases}4a-b-9=2\\-a+b+9=7\end{cases}}\) (**)

Cộng theo vế hai phương trình của hệ (**) được: 3a = 9 suy ra a = 3 (2)

Thay vào (1) tìm được c = 9 - 3a = 9 - 3 . 3  = 0 . Thay vào phương trình thứ nhất của hệ (*) suy ra: b =  a -c - 2 = 3 - 0 -2 = 1

Từ đây tổng hợp lại các kết quả ta được a = 3 ; b = 1; c = 0. Thay vào cái đặt ban đầu hết,ta được:

\(\frac{3y}{x+1}=3;\frac{2x}{y}=1;\frac{2x}{x+1}=0\)

+) \(\frac{2x}{x+1}=0\Rightarrow x=0\) ( thỏa mãn ĐKXĐ)

+) \(\frac{2x}{y}=1\Rightarrow y=2x=0\)( không thỏa mãn ĐKXĐ)

Vậy x = 0 và không tồn tại y thỏa mãn suy ra không có bộ số (x;y) nào thỏa mãn hệ phương trình.

7 tháng 1 2020

Hint: đặt \(\frac{1}{2x-y}=a;\frac{1}{x+y}=b\)

18 tháng 10 2020

a) \(\Leftrightarrow\hept{\begin{cases}\frac{x+1+1}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}\Leftrightarrow\hept{\begin{cases}1+\frac{1}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}}\)

Đặt \(a=\frac{1}{x+1};b=\frac{1}{y-2}\)

\(\Leftrightarrow\hept{\begin{cases}1+a+2b=6\\5a-b=3\end{cases}\Leftrightarrow\hept{\begin{cases}a+2b=5\\5a-b=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+1}=1\\\frac{1}{y-2}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=\frac{5}{2}\end{cases}}}\)

b) ĐK: \(\hept{\begin{cases}x\ne0\\y\ne1\end{cases}}\)

\(PT\left(1\right)\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\)(loại)

, x=2 , x2-2x+4=0 (3)

pt(3) vô nghiệm vì \(\Delta'=1-4=-3< 0\)

Thay x=2 vào pt(2) ta được \(\frac{1}{2}+\frac{1}{y-2}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow y=2\left(tm\text{đ}k\right)\)

Vậy nghiệm của hpt là: (x;y)=(2;2)