K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

x+y+z=1;x^2+y^2+z^2=1;x^3+y^3+z^3=1

=>x+y+z=x^2+y^2+z^2=x^3+y^3+z^3=1

=>x=y=z=1

2 tháng 6 2017

x = y = z = 1

\(\Rightarrow\) x + y + z = 3

mà đề bảo x + y + z = 1

\(\Rightarrow\) làm sai

15 tháng 10 2016

Ta có (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

= 5ab(a + b)(a2 - ab + b2) + 10a2b2(a + b) + a5 + b5

= - 10(a2 - ab + b2) - 20ab + a5 + b5

= - 5(2a2 - 2ab + 2b2 + 4ab) + a5 + b5

= - 5(a2 + b2 + c2) + a5 + b5

=> a5 + b+ c5 = - 5(a2 + b2 + c2) = 30

=> (a2 + b2 + c2) = - 6

Mà a2 + b2 + c2 + 2(ab + bc + ca) = 0

=> ab + bc + ca = - 3 (1)

Ta lại có a + b = - c

<=> a3 + b3 + 3ab(a + b) = - c3

<=> a3 + b3 + c3 = 3abc = 6

<=> abc = 2 (2)

Từ (1) và (2) ta có hệ

\(\hept{\begin{cases}x+y+z=0\\xyz=2\\xy+yz+xz=-3\end{cases}}\)

Vậy x, y, z là nghiệm của pt

A3 - 3A - 2 = 0

Giải phương trình này tìm nghiệm. Vì vai trò x, y, z là như nhau nên sắp sếp ngẫu nhiên 3 nghiệm tìm được sẽ là nghiệm cần tìm

14 tháng 10 2016

Cho 3 số -1; -1; 2 sắp xếp 3 số đó đi là có nghiệm phương trình đấy

1 tháng 3 2020

I don't know how to do exercise

1 tháng 3 2020

\(\hept{\begin{cases}x+y-z=7\\x^2+y^2-z^2=37\\x^3+y^3-z^3=1\end{cases}}\)<=> \(\hept{\begin{cases}x+y=7+z\\x^2+y^2=37+z^2\\x^3+y^3=1+z^3\end{cases}}\)

Ta có: \(x^2+y^2=37+z^2\)

<=> \(\left(x+y\right)^2-2xy=37+z^2\)

<=> \(2xy=\left(7+z\right)^2-37-z^2\)

<=> \(xy=6+7z\)

Ta có: \(x^3+y^3=1+z^3\)

<=> \(\left(x+y\right)\left(x^2+y^2-xy\right)=1+z^3\)

<=> \(\left(7+z\right)\left(37+z^2-6-7z\right)=1+z^3\)đây là phương trình bậc 2. Em giải ra tìm z => x; y

20 tháng 12 2019

EZ game

2 tháng 10 2019

\(\hept{\begin{cases}x+y+z=3\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\left(2\right)\\x^2+y^2+z^2=17\left(3\right)\end{cases}}\left(DK:x,y,z\ne0\right)\)

Ta co:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3>\frac{1}{3}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{3}\)

Vay HPT vo nghiem

24 tháng 12 2021

\(ĐK:x,y\ne0\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=4\\\dfrac{2}{x}+\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+1=2\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\left(tm\right)\)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)