Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x-2y=3\left(1\right)\\x^2+xy-5y=25\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow x^2+xy-5y-25=0\)
\(\Delta=b^2-4ac=\left(y+10\right)^2\ge0\)
=> phương trình (2) có 2 nghiệm \(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=5\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=-y-5\end{matrix}\right.\)
- với x=5 thì y=1
-với x=-y-5 thay vào (1)=> y=\(-\dfrac{8}{3}\);\(x=-\dfrac{7}{3}\)
Mệnh đề này đúng là bởi vì 12 là bội chung của cả 2 và 3
cho nên khi n chia hết cho 12 thì chắc chắn n sẽ chia hết cho 2 và 3
\(a;\left(\cos a-\sin a\right)\left(cosa+sina\right)=cos^2a-sin^2a=1-sin^2a-sin^2a=1-2sin^2a\)
\(b;VP=\left(2cosa-1\right)\left(2cosa+1\right)=4cos^2a-1=4\left(1-sin^2a\right)-1=3-4sin^2a=VT\)
e;\(\dfrac{1}{1+tana}+\dfrac{1}{1+cota}=1\Leftrightarrow cota+tana+2=\left(cota+1\right)\left(tana+1\right)\Leftrightarrow cota+tana+2=cota.tana+cota+tana+1\Leftrightarrow cota+tana+2=1+cota+tana+1\Leftrightarrow0=0\left(đúng\right)\Rightarrow VT=VP\)
\(d;sin^3a+cos^3a=\left(sina+cosa\right)\left(sin^2a-sina.cosa+cos^2a\right)=\left(sina+cosa\right)\left(1-sina.cosa\right)\left(đpcm\right)\left(hđt:a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\right)\)
\(c;sin^2a.cosa+sina.cos^2a=\left(sina.cosa\right)\left(sin^2+cos^2\right)=sina.cosa\)
\(f;;tana+\dfrac{cosa}{1+sina}=\dfrac{sina}{cosa}+\dfrac{cosa}{1+sina}=\dfrac{sina+sin^2a+cos^2a}{cosa\left(1+sina\right)}=\dfrac{1+sina}{cosa\left(1+sina\right)}=\dfrac{1}{cosa}\)
\(g;1+cot^2a=\dfrac{1}{sin^2a}=\dfrac{1}{1-cos^2a}=\dfrac{1}{\left(1-cosa\right)\left(1+cosa\right)}\left(đpcm\right)\)
\(h;\dfrac{1+cosa}{1-cosa}-\dfrac{1-cosa}{1+cosa}=\dfrac{\left(cosa+1\right)^2-\left(cosa-1\right)^2}{1-cosa^2}=\dfrac{\left(cosa+1-cosa+1\right)\left(cosa+1+cosa-1\right)}{1-cos^2a}=\dfrac{4cosa}{sin^2a}\left(đpcm\right)\)
\(k;\dfrac{1+cosa}{sina}-\dfrac{sina}{1+cosa}=\dfrac{\left(cosa+1\right)^2-sin^2a}{sina\left(1+cosa\right)}=\dfrac{cos^2a+2cosa+1-sin^2a}{sina\left(1+cosa\right)}=\dfrac{2cos^2a+2cosa}{sina\left(1+cosa\right)}=\dfrac{2cosa\left(1+cosa\right)}{sina\left(1+cosa\right)}=\dfrac{2cosa}{sina}=2cota\left(đpcm\right)\)
\(m;;;\Leftrightarrow sin^3a=cosa\left(1+cosa\right)\left(tana-sina\right)=\left(cosa+cos^2a\right)\left(tana-sina\right)\Leftrightarrow sin^3a=\left(cosa+cos^2a\right)\left(\dfrac{sina}{cosa}-sina\right)=sina-sina.cosa+cosa.sina-cos^2a.sina\Leftrightarrow sin^3a=sina-cos^2a.sina\Leftrightarrow sin^3a-sina\left(1-cos^2a\right)=0\Leftrightarrow sin^3a-sina.sin^2a=0\Leftrightarrow0=0\left(đúng\right)\Rightarrowđpcm\)
TH1: 1,2 đứng đầu
=>Có \(2\cdot2\cdot4=16\left(cách\right)\)
TH2: 1,2 đứng giữa
Nếu số 0 đứng cuối thì có \(2\cdot1\cdot4=8\left(cách\right)\)
Nếu số 8 đứng cuối thì có \(2\cdot1\cdot3=6\left(cách\right)\)
=>Có 14 cách
TH3: 1,2 đứng cuối
=>Có \(1\cdot4\cdot3=12\left(cách\right)\)
=>Có 16+14+12=42 cách
tui giải dc 1 nghiệm bài 6 thôi ông