Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\dfrac{\sqrt{5}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}+\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}\right):\sqrt{\dfrac{5}{2}}\)
\(=\left(\sqrt{5}+\sqrt{6}-\sqrt{6}+\sqrt{5}\right):\dfrac{\sqrt{5}}{\sqrt{2}}\)
\(=2\sqrt{5}.\dfrac{\sqrt{2}}{\sqrt{5}}=2\sqrt{2}\)
a) Ta có: \(\left(\dfrac{\sqrt{15}-\sqrt{20}}{\sqrt{3}-2}+\dfrac{3\sqrt{2}+2\sqrt{3}}{\sqrt{3}+\sqrt{2}}-\dfrac{1}{\sqrt{6}+\sqrt{5}}\right):\sqrt{\dfrac{5}{2}}\)
\(=\left(\sqrt{5}+\sqrt{6}-\sqrt{6}+\sqrt{5}\right):\dfrac{\sqrt{10}}{2}\)
\(=2\sqrt{5}\cdot\dfrac{2}{\sqrt{10}}=2\sqrt{2}\)
trong \(\Delta ABH\) vuông tại H có
AH=AB.cosA=5.cos60=2,5
BH=\(\sqrt{AB^2-AH^2}\)(pytago)=\(\sqrt{5^2-2,5^2}\)=4,3
trong \(\Delta BHC\) vuông tại H có
\(HB^2=BC.BF\)(dl1)\(\Rightarrow BF=\dfrac{HB^2}{BC}\)=\(\dfrac{4,3^2}{5\sqrt{3}}\)=2,1
HF=\(\sqrt{HB^2-BF^2}\)=\(\sqrt{4,3^2-2,1^2}\)=3,8
b: Vì (d)//(d') nên a=3
Vậy: (d):y=3x+b
Thay x=4 và y=-5 vào (d), ta được:
b+12=-5
hay b=-17
có
<=>352=2\(\pi\).7.h<=>352=14\(\pi\).h<=>h=352/(14.\(\pi\))
<=>h\(\approx\)8cm( nếu lấy\(\pi\) \(\approx\)3,14)
Từ D kẻ đường vuông góc DK (K thuộc AB) \(\Rightarrow CDKH\) là hình chữ nhật
\(\Rightarrow\left\{{}\begin{matrix}HK=CD=3,5\left(m\right)\\CH=DK=5\left(m\right)\end{matrix}\right.\)
Ta có:\(\widehat{KDA}=135^0-90^0=45^0\)
Trong tam giác vuông BCH:
\(cos\widehat{BCH}=\dfrac{CH}{BC}\Rightarrow BC=\dfrac{CH}{cos\widehat{BCH}}=\dfrac{5}{cos30^0}=\dfrac{10\sqrt{3}}{3}\left(m\right)\)
\(\Rightarrow BH=\sqrt{BC^2-CH^2}=\dfrac{5\sqrt{3}}{3}\left(m\right)\)
Trong tam giác vuông ADK:
\(\widehat{KAD}=90^0-\widehat{KDA}=45^0\Rightarrow\widehat{KAD}=\widehat{KDA}\Rightarrow\Delta ADK\) vuông cân tại K
\(\Rightarrow AK=DK=5\left(m\right)\)
\(\Rightarrow AD=\sqrt{AK^2+DK^2}=5\sqrt{2}\left(m\right)\)
\(AB=BH+HK+KA=\dfrac{51+10\sqrt{3}}{6}\left(m\right)\)
Chu vi: \(AB+CD+BC+AD\approx27,7\left(m\right)\)
Diện tích: \(S=\dfrac{1}{2}\left(AB+CD\right).CH\approx37,2\left(m^2\right)\)
Có \(tanC=\dfrac{AB}{AC}\Leftrightarrow tan30^0=\dfrac{AB}{10}\Leftrightarrow AB=\dfrac{10\sqrt{3}}{3}\approx5,8\left(cm\right)\)
\(BC=\sqrt{AB^2+AC^2}=\dfrac{20\sqrt{3}}{3}\approx11,5\left(cm\right)\)
\(\widehat{B}=90^0-\widehat{C}=60^0\)