\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\)và x - y +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

a)

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)

Đến đây dễ rồi

20 tháng 8 2018

b)

\(\left(\frac{x}{3}\right)^2=\frac{x}{3}\cdot\frac{x}{3}=\frac{x}{3}\cdot\frac{y}{4}=\frac{xy}{3\cdot4}=\frac{48}{12}=4=\left(\pm2\right)^2\)

TH1 : \(\frac{x}{3}=\frac{y}{4}=2\)

Sau đó tìm x và y

TH2 : \(\frac{x}{3}=\frac{y}{4}=-2\)

Sau đó lại tìm x và y

Sau cùng kết luận

Học tốt

5 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)

=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\)  =>   \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)

Vậy ...

a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ

\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)

\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)

3 tháng 10 2018
a, 4x=5y=> x/5=y/4 => x/5=y/4=3x/15=2y/8 => 3x-2y/15-8=35/7=5( theo tính chất dãy tỉ số bằng nhau) => x=25;y=20 b, x/2=y/3=z/5 =>x+y+z/2+3+5=-90/10=-9(theo tính chất dãy tỉ số bằng nhau) =>x=-18;y=-27;z=-45 c, x:y:z=3:5:(-2) => x/3=y/5=z/-2 =5x/15=y/5=3z/-6 =>5x-y+3z/15-5+(-6)(theo tính chất dãy tỉ số bằng nhau) =124/4=31 =>x=93;y=155;z=-62 Mik sẽ bổ sung sau vì máy mik sắp hết pin
4 tháng 2 2019

Tớ làm lần lượt nhé.

Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)

\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta được:

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)

\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)

\(\frac{y-2}{4}=1\Rightarrow y=6\)

\(\frac{z-3}{5}=1\Rightarrow z=3\)

4 tháng 2 2019

\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)

\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)

\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)

\(\Rightarrow x=7\cdot\frac{200}{35}=40\)

\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)

P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.

18 tháng 3 2020

\(\frac{x}{5}=\frac{y}{7}\Rightarrow\frac{x}{15}=\frac{x}{21};\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{21}=\frac{z}{28}=\frac{x+y+z}{15+21+28}=\frac{192}{64}=3\)

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=21.3=63\\z=28.3=84\end{cases}}\)

Vậy: x=45; y=63;z=84

18 tháng 3 2020

Theo bài ra ta có :

\(\frac{x}{5}\)=\(\frac{y}{7}\)\(\Rightarrow\frac{x}{15}\)=\(\frac{y}{21}\)

\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{28}\)

\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{21}=\frac{z}{28}\)và x+y+z=192

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{21}=\frac{z}{28}=\frac{x+y+z}{15+21+28}=\frac{192}{64}=3\)

\(\Rightarrow\hept{\begin{cases}x=3.15=45\\y=3.21=63\\z=3.28=74\end{cases}}\)

Nhớ k  mk nha

10 tháng 8 2016

Đặt \(\frac{x}{2}=\frac{y}{3}=k\)\(\left(k\ne0\right)\)

=> x=2k , y =3k

x.y=54 => 2k.3k=54 => 6k^2=54

=> k=\(+-3\)

=> (x,y)=(6,9) = (-6,-9)

mk cung hoc lop 7 nhung cai bai do ma ko lam dc thi chet di

6 tháng 7 2018

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405