Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x-3\right)^4-3^2=503\\ \Rightarrow2\left(x-3\right)^4=512\\ \Rightarrow\left(x-3\right)^4=256\\ \Rightarrow\left[{}\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
4:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
=>ABDC là hcn
=>ΔACD vuông tại C
b: Xét ΔKAB vuông tại A và ΔKCD vuông tại C có
KA=KC
AB=CD
=>ΔKAB=ΔKCD
=>KB=KD
c: Xét ΔACD có
DK,CM là trung tuyến
DK cắt CM tại I
=>I là trọng tâm
=>KI=1/3KD
Xét ΔCAB có
AM,BK là trung tuyến
AM cắt BK tại N
=>N là trọng tâm
=>KN=1/3KB=KI
\(f(x)=ax^2+bx+6\)
Để \(f(x)\) là đa thức bậc \(1\) thì \(ax^2=0\)
\(→a=0\)
Thay \(x=1\) vào \(f(x)=ax^2+bx+6\)
\(f(1)=b.1+6=b+6\)
Mà \(f(1)=3\)
\(\Rightarrow b+6=3\Rightarrow b=3−6\Rightarrow b=−3\)
Vậy \(a=0;b=−3\)
a: Xét ΔAMC và ΔBMD có
MA=MB
\(\widehat{AMC}=\widehat{BMD}\)
MC=MD
Do đó: ΔAMC=ΔBMD
\(\dfrac{x}{3}-2=\dfrac{1}{15}\)
=>\(\dfrac{x}{3}=2+\dfrac{1}{15}=\dfrac{31}{15}\)
=>\(x=\dfrac{31}{15}\cdot3=\dfrac{31}{5}\)
a, Theo định lí Pytago tam giác ABH vuông tại H
\(AH=\sqrt{AB^2-BH}=\sqrt{81-9}=6\sqrt{2}\)
Theo định lí Pytago tam giác AHC vuông tại H
\(HC=x=\sqrt{AC^2-AH^2}=7\)
b, Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AC^2=HC.BC=1600\Rightarrow AC=x=40\)