K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\Rightarrow\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\) (1)

Nhân tư và mẫu vế trái (1) với 3 và vế phải với 13 ta được:

\(\dfrac{2a+13b}{2c+13d}=\dfrac{14a+91b}{14c+91d}=\dfrac{39a-91b}{39c-91d}\)

=\(\dfrac{\left(14a+91b\right)+\left(39a-91b\right)}{\left(14c+91d\right)+\left(39c-91d\right)}=\dfrac{53a}{53c}=\dfrac{a}{c}\) (2)

Nhân tử và mẫu vế trái (1) với 3 và vế phải với 2 ta được:

\(\dfrac{2a+13b}{2c+13d}=\dfrac{6a+39b}{6c+39d}=\dfrac{6a-14b}{6c-14d}=\dfrac{53b}{53d}=\dfrac{b}{d}\) (3)

Từ (2) và (3) suy ra :

\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

1 tháng 2 2018

bạn ấy giải chỉ nhầm một tẹo

4 tháng 11 2017

1 tỉ số ko thành 1 tỉ lệ thức nhé!

14 tháng 6 2017

Ta có: \(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)

\(\Rightarrow\left(2a+13b\right)\left(3c-7d\right)=\left(2c+13d\right)\left(3a-7b\right)\)

\(\Rightarrow6ac+39bc-14ad-91bd=6ac+39ad-14bc-91bd\)

\(\Rightarrow6ac-6ac+39bc+14bc-14ad-39ad-91bd+91bd=0\)

\(\Rightarrow53bc-53ad=0\)

\(\Rightarrow53bc=53ad\)

\(\Rightarrow bc=ad\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\rightarrowđpcm.\)

14 tháng 6 2017

\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)

\(\Leftrightarrow\)(2a+13b)(3c-7d)=(2c+13d)(3a-7b)

2a(3c-7d)+13b(3c-7d)=2c(3a-7b)+13d(3a-7b)

6ac-14ad+39bc-91bd=6ac-14bc+39ad+91bd

14ad+39bc+91bd=14bc+39ad+91bd

14ad+39bc=14bc+39ad

39bc=14bc+39ad-14ad

39bc=14bc+25ad

39bc-14bc=25ad

25bc=25ad

bc=ad

Ta có: Điều đề bài cho:

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\left(đpcm\right)\)

11 tháng 11 2023

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)

Ta có: \(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)

\(\Leftrightarrow\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)

\(\Leftrightarrow\dfrac{a}{c}+\dfrac{b}{d}=\dfrac{a}{c}-\dfrac{b}{d}\)

\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

hay \(\dfrac{a}{b}=\dfrac{c}{d}\)