K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\sqrt{\dfrac{3\sqrt{5}-1}{2\sqrt{5}+3}}-\sqrt{\dfrac{\sqrt{5}+11}{7-2\sqrt{5}}}\)

\(=\sqrt{\dfrac{\left(3\sqrt{5}-1\right)\left(2\sqrt{5}-3\right)}{11}}-\sqrt{\dfrac{\left(11+\sqrt{5}\right)\left(7+2\sqrt{5}\right)}{29}}\)

\(=\sqrt{\dfrac{11\cdot\left(30-9\sqrt{5}-2\sqrt{5}+3\right)}{121}}-\sqrt{29\cdot\left(\dfrac{77+22\sqrt{5}+7\sqrt{5}+20}{841}\right)}\)

\(=\dfrac{\sqrt{363-121\sqrt{5}}}{11}+\dfrac{\sqrt{2813+841\sqrt{5}}}{29}\)

\(=\dfrac{\sqrt{726-242\sqrt{5}}}{11\sqrt{2}}+\dfrac{\sqrt{5626+1682\sqrt{5}}}{29\sqrt{2}}\)

 

28 tháng 8 2021

\(x=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\)

\(=\sqrt{5}+2-\sqrt{5}+2=4\)

\(y=\sqrt{3+2\sqrt{5}}-\sqrt{3-2\sqrt{5}}\)

Xem lại đề, \(\sqrt{3-2\sqrt{5}}\) không xác định.

22 tháng 9 2021

\(=\sqrt{\left(2\sqrt{3}+3\right)^2}-\sqrt{\left(2\sqrt{3}-3\right)^2}\)

\(=\left|2\sqrt{3}+3\right|-\left|2\sqrt{3}-3\right|\)

\(=2\sqrt{3}+3-2\sqrt{3}+3\)

\(=6\)

22 tháng 9 2021

Cảm ơn bạn nhiều.

9 tháng 10 2021

=\(\sqrt{2\left(12-6\sqrt{3}\right)}-\sqrt{2\left(28+10\sqrt{3}\right)}\)

=\(\sqrt{2\left(3-\sqrt{3}\right)2}-\sqrt{2\left(5+\sqrt{3}\right)^2}\)

=\(\sqrt{2}\left(3-\sqrt{3}\right)-\sqrt{2}\left(5+\sqrt{3}\right)=\sqrt{2}\left(3-\sqrt{3}-5-\sqrt{3}\right)\)

=\(\sqrt{2}\left(-2-2\sqrt{3}\right)\)=\(-2\sqrt{2}-2\sqrt{6}\)

9 tháng 10 2021

Mình cảm mơn nhaa

a: ĐKXĐ x>0; x<>1

\(A=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x-1}{\sqrt{x}}\)

b: A<0

=>x-1<0

=>0<x<1

2 tháng 7 2023

loading...

loading...

6 tháng 7 2023

\(VT=\sqrt{\dfrac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}.\left(3\sqrt{2}+\sqrt{14}\right)\)

\(=\sqrt{\dfrac{\sqrt{5}}{8\sqrt{5}+3\sqrt{5}.\sqrt{7}}}.\left(3\sqrt{2}+\sqrt{2}.\sqrt{7}\right)\)

\(=\sqrt{\dfrac{\sqrt{5}}{\sqrt{5}\left(8+3\sqrt{7}\right)}}.\left[\sqrt{2}\left(3+\sqrt{7}\right)\right]\)

\(=\sqrt{\dfrac{1}{8+3\sqrt{7}}}.\left[\sqrt{2}\left(3+\sqrt{7}\right)\right]\)

\(=\dfrac{\sqrt{2}\left(3+\sqrt{7}\right)}{\sqrt{8+3\sqrt{7}}}\)

\(=\dfrac{\sqrt{2}.\sqrt{2}\left(3+\sqrt{7}\right)}{\sqrt{2}.\sqrt{8+3\sqrt{7}}}\) (Nhân \(\sqrt{2}\) cả tử và mẫu)

\(=\dfrac{2\left(3+\sqrt{7}\right)}{\sqrt{16+6\sqrt{7}}}\)

\(=\dfrac{2\left(3+\sqrt{7}\right)}{\sqrt{\left(3+\sqrt{7}\right)^2}}\)

\(=\dfrac{2\left(3+\sqrt{7}\right)}{\left|3+\sqrt{7}\right|}\)

\(=\dfrac{2\left(3+\sqrt{7}\right)}{3+\sqrt{7}}\)

\(=2=VP\left(dpcm\right)\)

6 tháng 7 2023

e cảm mơn ạ

 

26 tháng 12 2016

\(tan\text{ }B\text{ }-3.tan\text{ }C=tan\text{ }60^o-3.tan\text{ }30^o=\sqrt{3}-3.\frac{1}{\sqrt{3}}=0\text{ }\text{ }\text{ }\text{ }\text{ }\)

22 tháng 11 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>AH=6(cm)

BC=BH+CH

=4+9

=13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\\AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có \(tanABC=\dfrac{AC}{AB}=\dfrac{3}{2}\)

nên \(\widehat{ABC}\simeq56^0\)

b: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

\(AE\cdot AB+AF\cdot AC=AH^2+AH^2=2AH^2=2FE^2\)

 

31 tháng 10 2021

a: HB=4,5(cm)

BC=12,5(cm)

b: \(\widehat{B}=37^0\)

\(\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right)\cdot\dfrac{1}{\sqrt{3}}\)

\(=\sqrt{3}\cdot\dfrac{1}{\sqrt{3}}\)

=1

9 tháng 10 2021

Cho mình hỏi là sao ra được √3 vậy? Tại mình học yếu á. Nên mình không hiểu lắm.