Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\)
Để phương trình có hai nghiệm phân biệt thì 2m-3<>0
hay m<>3/2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)
Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)
\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)
\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)
\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)
\(\Leftrightarrow48m^2-250+85=0\)
Đến đây bạn chỉ cần giải pt bậc hai là xong rồi
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)
\(=\left(2m-3\right)^2+1>0\)
Vậy pt có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)
Ta có \(3x_1-4x_2=11\left(3\right)\)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)
\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)
Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)
\(\Leftrightarrow m=4,125\)
Thay m=-1 vào pt ta được:
\(x^2+4x-5=0\)\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Có \(ac=-5< 0\) =>Pt luôn có hai nghiệm pb trái dấu
Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\2x_1-x_2=11\\x_1x_2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_1-11=2\left(m-1\right)\\x_2=2x_1-11\\x_1x_2=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{3}\\x_2=\dfrac{4m-15}{3}\\x_1x_2=-5\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{2m+9}{3}\right)\left(\dfrac{4m-15}{3}\right)=-5\)\(\Leftrightarrow8m^2+6m-90=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{15}{4}\end{matrix}\right.\)
Vậy...
a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=-2m+1\\4x_1x_2=2m-2\end{matrix}\right.\)
Cộng vế với vế:
\(\Rightarrow2\left(x_1+x_2\right)+4x_1x_2=-1\)
Đây là hệ thức liên hệ các nghiệm ko phụ thuộc m
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
a: Khi m=-2 thì phương trình trở thành \(x^2+2x-3=0\)
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)
Để phương trình có hai nghiệm phân biệt thì -4m+8>0
=>-4m>-8
hay m<2
Theo hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=-\dfrac{2}{3}\\x_1=2x_2=-\dfrac{4}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=m-1\)
\(\Leftrightarrow m-1=\dfrac{8}{9}\)
hay m=17/9(nhận)
a. Thay m=-2 ta được: \(x^2+2x-2-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b. Để phương trình (*) có 2 nghiệm phân biệt thì \(\Delta=4-4\left(m-1\right)>0\Leftrightarrow1>m-1\Leftrightarrow m< 2\)
Áp dụng định lí Vi-et ta có: \(x_1+x_2=\dfrac{-2}{1}=-2\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-\dfrac{4}{3}\\x_2=\dfrac{-2}{3}\end{matrix}\right.\)\(\Rightarrow x_1.x_2=\dfrac{m-1}{1}=\dfrac{-4}{3}.\dfrac{-2}{3}=m-1\Rightarrow m=\dfrac{17}{9}\)<2
Vậy m=\(\dfrac{17}{9}\)
\(\Delta=\left(2m-3\right)^2>0\Rightarrow m\ne\frac{3}{2}\)
Áp dụng hệ thức Vi-ét,ta có :
\(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4x_1+4x_2=2\left(1-2m\right)\\3x_1-4x_2=11\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7x_1=13-4m\\x_1+x_2=\frac{1-2m}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_2=\frac{1-2m}{2}-x_1=\frac{1-2m}{2}-\frac{13-4m}{7}=\frac{-6m-19}{14}\end{cases}}\)
Mà \(x_1x_2=\frac{m-1}{2}\Rightarrow\frac{13-4m}{7}.\frac{-6m-19}{14}=\frac{m-1}{2}\)
\(\Rightarrow\orbr{\begin{cases}m=\frac{33}{8}\\m=-2\end{cases}\left(tm\right)}\)
Vậy ...
=>căn 2x1=x2-1
=>2x1=x2^2-2x2+1
=>x2^2-2(x1+x2)+1=0
=>x2^2-2(2m+1)+1=0
=>x2^2=4m+2-1=4m+1
=>\(x_2=\pm\sqrt{4m+1}\)
=>\(x_1=2m+1\pm\sqrt{4m+1}\)
x1*x2=m^2-m
=>m^2-m=4m+1\(\pm2m+1\)
=>m^2-5m-1=\(\pm2m+1\)
TH1: m^2-5m-1=2m+1
=>m^2-7m-2=0
=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)
TH2: m^2-5m-1=-2m-1
=>m^2-3m=0
=>m=0; m=3
2x2+(2m−1)x+m−1=02x2+(2m−1)x+m−1=0
Δ=(2m−1)2−8(m−1)Δ=(2m−1)2−8(m−1)
=4m2−12m+9=(2m−3)2=4m2−12m+9=(2m−3)2
phương trình có 2 nghiệm phân biệt khi 2m−3≠02m−3≠0
xét 2 trường hợp
*TH1:2m−3>0⇔m>322m−3>0⇔m>32 (1)
x1=−(2m−1)−(2m−3)4=−m+1x1=−(2m−1)−(2m−3)4=−m+1
x2=−(2m−1)+2m−34=−12x2=−(2m−1)+2m−34=−12
3x1−4x2=−3m+3+2=−3m+5=113x1−4x2=−3m+3+2=−3m+5=11
⇔m=−2⇔m=−2 loại vì không thỏa đk (1)
*TH2:2m−3<0⇔m<322m−3<0⇔m<32 (2)
x1=−12x1=−12
x2=−m+1x2=−m+1
3x1−4x2=−32+4m−4=4m−112=113x1−4x2=−32+4m−4=4m−112=11
⇔m=338⇔m=338 loại vì không thỏa đk (2)
Vậy không tồn tại m để phương trình có 2 nghiệm thỏa mãn đk trên