K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

Bài 4: 

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

27 tháng 10 2021

undefined

\(TanB=\dfrac{AC}{AB}\Rightarrow Tan30^o=\dfrac{AC}{4,5}\Rightarrow AC=Tan30^o.4,5=\dfrac{3\sqrt{3}}{2}\left(m\right)\)

\(CosB=\dfrac{AB}{BC}\Rightarrow Cos30^o=\dfrac{4,5}{BC}\Rightarrow BC=Cos30^o.4,5=\dfrac{9\sqrt{3}}{4}\)

Chiều cao ban đầu của cây tre là: \(\dfrac{3\sqrt{3}}{2}+\dfrac{9\sqrt{3}}{4}=\dfrac{15\sqrt{3}}{4}\approx6,5\left(m\right)\)

 

Câu 1: D

Câu 2: C

Câu 3: C

Câu 4: D

Câu 5: A

14 tháng 5 2022

 1: D

 2: C

 3: C

 4: D

 5: A

Câu 4: 

Thay x=2 và y=-1 vào hệ, ta được:

\(\left\{{}\begin{matrix}2a-b=4\\2b+2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\a=1\end{matrix}\right.\)

18 tháng 7 2023

3, ta có:

\(B=\dfrac{\sqrt{x}-3+2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}\cdot\dfrac{2\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{2\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\\ =\dfrac{6}{\sqrt{x}-3}\)

để B=3 thì ta có:

\(\dfrac{6}{\sqrt{x}-3}=3\\ \Leftrightarrow\dfrac{6}{\sqrt{x}-3}=\dfrac{3\sqrt{x}-9}{\sqrt{x}-3}\\ \Leftrightarrow6=3\sqrt{x}-9\\ \Leftrightarrow3\sqrt{x}=15\\ \Leftrightarrow\sqrt{x}=5\\ \Leftrightarrow x=25\)

vậy để B=3 thì x=25

 

 

 

 

18 tháng 3 2023

CÂU 4:

a) △ABC có (O) là tâm đường tròn nội tiếp và (O) tiếp xúc với AB,BC lần lượt tại D,E.

⇒OD⊥BC tại D, OE⊥AB tại E nên \(\widehat{ODB}=\widehat{OEB}=90^0\)

Tứ giác BDOE có \(\widehat{ODB}+\widehat{OEB}=90^0+90^0=180^0\)

\(\Rightarrow\)BDOE là tứ giác nội tiếp.

\(\Rightarrow\)B,D,O,E cùng thuộc 1 đường tròn.

b) Cách đơn giản nhất: *Gọi K là trung điểm BP.

Xét (O): BE, BD là 2 tiếp tuyến cắt nhau ở B.

\(\Rightarrow BE=BD\left(1\right)\)

PF, PE là 2 tiếp tuyến cắt nhau ở P.

\(\Rightarrow PF=PE\left(2\right)\)

Lấy (1)+(2) ta được \(BD+PF=BP\)

Ta có: DF⊥PQ tại F, DF⊥BC tại D nên PQ//BC.

Xét hình thang BDFP (BD//PF) có:

O là trung điểm DF, K là trung điểm BP.

\(\Rightarrow\)KO là đường trung bình của hình thang BDFP.

\(\Rightarrow KO=\dfrac{1}{2}\left(PF+BD\right)=\dfrac{1}{2}BP\)

Xét △BOP có: OK là trung tuyến và \(OK=\dfrac{1}{2}BP\)

\(\Rightarrow\)△BOP vuông tại O.

 

 

 

18 tháng 3 2023

c) (O) tiếp xúc với AC tại H.

△ABC có (O) tiếp xúc với BC,AB,CA lần lượt tại D,E,H.

\(\Rightarrow BD=BE;AE=AH;CD=CH\)

\(BD+BE=AB-AE+BC-CD=AB+BC-AH-CH=AB+BC-AC\)

\(\Rightarrow BD=\dfrac{AB+BC-CA}{2}\left(3\right)\)

*Qua M kẻ đường thẳng vuông góc với BC cắt tia AO tại I.

*Hạ IN⊥AB tại N, IP⊥CA tại P.

Xét △AIM có: OF//IM \(\Rightarrow\dfrac{OF}{IM}=\dfrac{AO}{AI}\) (4) (hệ quả định lí Thales)

Xét △AIN có: OE//IN \(\Rightarrow\dfrac{OE}{IN}=\dfrac{AO}{AI}\) (5) (hệ quả định lí Thales)

Ta cũng có \(OE=OF\left(6\right)\) (bằng bán kính của (O) )

\(\left(4\right),\left(5\right),\left(6\right)\Rightarrow IM=IN\)

Dễ dàng chứng minh △BNI=△BMI (ch-cgv) nên \(\widehat{NBI}=\widehat{MBI}\)

\(\Rightarrow BI\) là phân giác của góc NBC hay BI là phân giác ngoài của △ABC.

Xét △ABC có: Phân giác trong góc A (AO) cắt phân giác ngoài góc B (BI) tại I.

\(\Rightarrow\)I là tâm đường tròn bàng tiếp ở đỉnh A.

Lại có IN⊥AB tại N, IM⊥BC tại M, IP⊥AC tại P.

\(\Rightarrow\)IN,IP,IM là các bán kính của (I).

\(\Rightarrow\)(I) tiếp xúc với AB,BC,CA lần lượt tại N,M,P.

\(\Rightarrow AN=AP;BN=BM;CM=CP\)

\(CM+CP=BC-BM+AP-AC=BC-AC+AN-BN=BC-AC+AB\)

\(\Rightarrow CM=\dfrac{BC+AB-AC}{2}\left(7\right)\)

\(\left(3\right),\left(7\right)\Rightarrow BD=CM\)

 

3: góc AMN=góic ACM

=>AM là tiếp tuyến của đường tròn ngoại tiếp ΔECM

=>góc AMB=90 độ

=>Tâm o1 của đường tròn ngoại tiếp ΔECM nằm trên BM

NO1 min khi NO1=d(N;BM)

=>NO1 vuông góc BM

Gọi O1 là chân đường vuông góc kẻ từ N xuống BM

=>O1 là tâm đường tròn ngoại tiếp ΔECM  có bán kính là O1M
=>d(N;tâm đường tròn ngoại tiếp ΔECM) nhỏ nhất khi C là giao của (O1;O1M) với (O) với O1 ;là hình chiếu vuông góc của N trên BM