Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi
\(\text{Δ}=\left(-3\right)^2-4\cdot\left(2m+1\right)\)
=9-8m-4=-8m+5
Để phương trình có nghiệm kép thì -8m+5=0
hay m=5/8
Pt trở thành \(x^2-3x+\dfrac{9}{4}=0\)
hay x=3/2
a: góc APH=góc APK=90 độ
gó AEH=90 độ
=>góc APH=góc AEH=90 độ
=>APFE nội tiếp
b: góc AFH=góc AEH=90 độ
=>AFHE nội tiếp
=>A,P,F,E,H cùng thuộc 1 đường tròn
=>góc PFx=góc PEH
góc PEB=góc PEx+góc xFB=90 độ+góc PEx
góc PEC=góc PEH+góc HEC=góc PEH+90 độ
=>góc PEB=góc PEC
Xét ΔPBF và ΔPCE có
góc PBF=góc PCE
góc PFB=góc PEC
=>ΔPBF đồng dạng với ΔPCE
=>PB/PC=PF/PE
=>PB*PE=PC*PF
\(Q=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1-2}{\sqrt{x}-1}=1-\dfrac{2}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}-1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}-1=-2\\\sqrt{x}-1=-1\\\sqrt{x}-1=1\\\sqrt{x}-1=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=-1\left(vn\right)\\\sqrt{x}=0\\\sqrt{x}=2\\\sqrt{x}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=9\end{matrix}\right.\)
\(3,\\ a,P=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\left(x>0;x\ne1;x\ne4\right)\\ P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\\ P=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\\ b,P=\dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\\ \Leftrightarrow\sqrt{x}=8\Leftrightarrow x=64\)
\(c,x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\\ \Leftrightarrow P=\dfrac{\sqrt{3}+1-2}{3\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{\left(\sqrt{3}-1\right)\left(3\sqrt{3}-3\right)}{18}\\ P=\dfrac{12-6\sqrt{3}}{18}=\dfrac{2-\sqrt{3}}{3}\)
\(d,P\in Z\Leftrightarrow3P\in Z\Leftrightarrow\dfrac{3\sqrt{x}-6}{3\sqrt{x}}\in Z\Leftrightarrow1-\dfrac{6}{3\sqrt{x}}\in Z\\ \Leftrightarrow6⋮3\sqrt{x}\Leftrightarrow3\sqrt{x}\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;2;3;6\right\}\left(\sqrt{x}\ge0\right)\\ \Leftrightarrow x\in\left\{1;4;9;36\right\}\)
\(4,\\ A=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\\ A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\\ A=\left|x+1\right|+\left|x-1\right|\\ A=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)
Dấu \("="\Leftrightarrow x=1\)
bạn tự vẽ hình giúp mik nha
a. xét \(\Delta ADN\) và \(\Delta BAM\) có
AB=AD(gt)
\(\widehat{ADN}=\widehat{BAM}=90^o\)
DN=MA(N,M là trung điểm của cạnh DC,AD)
\(\Rightarrow\Delta ADN\sim\Delta BAM\left(c.g.c\right)\)
\(\Rightarrow\widehat{DNA}=\widehat{AMB}\)
mà:\(\widehat{DNA}+\widehat{DAN}=90^o\Rightarrow\widehat{BMA}+\widehat{DAN}=90^o\)
\(\Rightarrow\Delta MAI\) vuông tại I
\(\Rightarrow AI\perp MI\) hay \(MB\perp AN\)
b.ta có M là trung điểm của AD\(\Rightarrow AM=\dfrac{1}{2}AD=\sqrt{5}\)
trong \(\Delta MAB\) vuông tại A có
\(MB=\sqrt{AM^2+AB^2}=\sqrt{\sqrt{5^2}+\left(2\sqrt{5}\right)^2}=5\)
\(AM^2=MB.MI\Rightarrow MI=\dfrac{AM^2}{MB}=\dfrac{\sqrt{5^2}}{5^5}=0,2\)
\(AI.MB=AM.AB\Rightarrow AI=\dfrac{AM.AB}{MB}=\dfrac{\sqrt{5}.2\sqrt{5}}{5}\)=2
c.IB=MB-MI=5-0,2=4,8
\(S_{\Delta AIB}=\dfrac{AI.IB}{2}=\)\(\dfrac{2.4,8}{2}=4,8\)
\(S_{\Delta ADN}=\dfrac{AD.DN}{2}=\dfrac{2\sqrt{5}.\sqrt{5}}{2}=5\)
\(S_{\Delta ABCD}=\left(2\sqrt{5}\right)^2=20\)
\(S_{BINC}=S_{ABCD}-S_{\Delta AIB}-S_{\Delta DAN}\)=20-4,8-5=10,2
1/
Để hàm số trên đồng biến
Thì m-1 > 0 ⇔ m>1
2/
a,<bạn tự vẽ>
b,Theo phương trình hoành độ giao điểm
\(2x=-x+3\Leftrightarrow3x=3\Leftrightarrow x=1\)
Thay x=1 vào y=2x
y=2.1=2
Vậy tọa độ giao điểm A là (1;2)
3/ Để (d) đi qua điểm M (1;-2)
Thì x=1 và y=-2
Thay x=1 và y=-2 vào (d)
\(-2=a\cdot1+1\Leftrightarrow a=-3\)
vậy ....
Bài 1:
Để hàm số bậc nhất \(y=\left(m-1\right)x+3\) đồng biến.
=> \(m-1>0.\)
<=> \(m>1.\)
Bài 2:
b) Xét phương trình hoành độ giao điểm của 2 hàm số trên ta có:
\(\text{2x = -x + 3.}\)
<=> \(\text{2x + x - 3= 0.}\)
<=> \(\text{3x - 3 = 0.}\)
<=> \(x=1.\)
=> \(y=2.\)
Vậy A(1; 2).
Bài 3:
Vì (d) đi qua điểm M(1; -2).
=> -2 = a. 1 + 1.
<=> a = -3.
Vậy a = -3.
Lời giải:
ĐKXĐ: $x>0; x\neq 1$
\(P=\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}-\frac{1}{\sqrt{x}(\sqrt{x}-1)}\right]:\left[\frac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)
\(=\frac{x-1}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}:\frac{1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}.(\sqrt{x}-1)=\frac{x-1}{\sqrt{x}}\)
b.
$x=7-4\sqrt{3}=(2-\sqrt{3})^2\Rightarrow \sqrt{x}=2-\sqrt{3}$
Khi đó:
$P=\frac{6-4\sqrt{3}}{2-\sqrt{3}}=-2\sqrt{3}$
c.
$P=\frac{x-1}{\sqrt{x}}=\frac{3}{2}$
$\Rightarrow 2(x-1)=3\sqrt{x}$
$\Leftrightarrow 2x-3\sqrt{x}-2=0$
$\Leftrightarrow (\sqrt{x}-2)(2\sqrt{x}+1)=0$
$\Rightarrow x=4$ (tm)
Lời giải:
ĐKXĐ: $x>0; x\neq 1$
\(P=\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}-\frac{1}{\sqrt{x}(\sqrt{x}-1)}\right]:\left[\frac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)
\(=\frac{x-1}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}:\frac{1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}.(\sqrt{x}-1)=\frac{x-1}{\sqrt{x}}\)
b.
$x=7-4\sqrt{3}=(2-\sqrt{3})^2\Rightarrow \sqrt{x}=2-\sqrt{3}$
Khi đó:
$P=\frac{6-4\sqrt{3}}{2-\sqrt{3}}=-2\sqrt{3}$
c.
$P=\frac{x-1}{\sqrt{x}}=\frac{3}{2}$
$\Rightarrow 2(x-1)=3\sqrt{x}$
$\Leftrightarrow 2x-3\sqrt{x}-2=0$
$\Leftrightarrow (\sqrt{x}-2)(2\sqrt{x}+1)=0$
$\Rightarrow x=4$ (tm)