K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

\(A=\frac{3}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}-3}{x-1}\)

\(=\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3\sqrt{x}-3-\sqrt{x}+1-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{\sqrt{x}-1}\)

29 tháng 8 2021

\(B=\left(1-\frac{\sqrt{2}}{x-\sqrt{2}}+\frac{\sqrt{2}}{x+\sqrt{2}}\right)\div\frac{x-\sqrt{6}}{x^2-2}\)

\(=\left[\frac{x^2-2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}-\frac{\sqrt{2}\left(x+\sqrt{2}\right)}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}+\frac{\sqrt{2}\left(x-\sqrt{2}\right)}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\right]\cdot\frac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{6}}\)

\(=\frac{x^2-2-\sqrt{2}x-2+\sqrt{2}x-2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\cdot\frac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{6}}\)

\(=\frac{x^2-6}{x-\sqrt{6}}=\frac{\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)}{x-\sqrt{6}}=x+\sqrt{6}\)

29 tháng 10 2021

\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt[]{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)

\(=18+3\sqrt{81-80}.x=18+3x\)\(\Rightarrow x^3-3x=18\left(1\right)\)

\(y=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow y^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)

\(=6+3\sqrt[3]{9-8}.y=6+3y\)\(\Rightarrow y^3-3y=6\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow P=x^3+y^3-3\left(x+y\right)+1996=x^3-3x+y^3-3y+1996\)

\(=18+6+1996=2020\)

17 tháng 10 2021

bạn tự vẽ hình giúp mik nha

a. xét \(\Delta ADN\) và \(\Delta BAM\) có

AB=AD(gt)

\(\widehat{ADN}=\widehat{BAM}=90^o\)

DN=MA(N,M là trung điểm của cạnh DC,AD)

\(\Rightarrow\Delta ADN\sim\Delta BAM\left(c.g.c\right)\)

\(\Rightarrow\widehat{DNA}=\widehat{AMB}\)

mà:\(\widehat{DNA}+\widehat{DAN}=90^o\Rightarrow\widehat{BMA}+\widehat{DAN}=90^o\)

\(\Rightarrow\Delta MAI\) vuông tại I

\(\Rightarrow AI\perp MI\) hay \(MB\perp AN\)

b.ta có M là trung điểm của AD\(\Rightarrow AM=\dfrac{1}{2}AD=\sqrt{5}\)

trong \(\Delta MAB\) vuông tại A có

\(MB=\sqrt{AM^2+AB^2}=\sqrt{\sqrt{5^2}+\left(2\sqrt{5}\right)^2}=5\)

\(AM^2=MB.MI\Rightarrow MI=\dfrac{AM^2}{MB}=\dfrac{\sqrt{5^2}}{5^5}=0,2\)

\(AI.MB=AM.AB\Rightarrow AI=\dfrac{AM.AB}{MB}=\dfrac{\sqrt{5}.2\sqrt{5}}{5}\)=2

c.IB=MB-MI=5-0,2=4,8

\(S_{\Delta AIB}=\dfrac{AI.IB}{2}=\)\(\dfrac{2.4,8}{2}=4,8\)

\(S_{\Delta ADN}=\dfrac{AD.DN}{2}=\dfrac{2\sqrt{5}.\sqrt{5}}{2}=5\)

\(S_{\Delta ABCD}=\left(2\sqrt{5}\right)^2=20\)

\(S_{BINC}=S_{ABCD}-S_{\Delta AIB}-S_{\Delta DAN}\)=20-4,8-5=10,2

 

 

17 tháng 10 2021

Ok mình cảm ơn bạn nha

 

12 tháng 2 2022

E tk nha:

undefined

26 tháng 9 2021

undefined

Còn nửa phần dưới mình quên đăng ạ

26 tháng 9 2021

a) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

b) \(=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

c) \(=\sqrt{\left(2\sqrt{2}+3\right)^2}=2\sqrt{2}+3\)

d) \(=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)

e) \(=\sqrt{\left(4-\sqrt{6}\right)^2}=4-\sqrt{6}\)

f) \(=\sqrt{\left(3+\sqrt{7}\right)^2}=3+\sqrt{7}\)

l) \(=\sqrt{\left(\sqrt{2}-\dfrac{1}{2}\right)^2}=\sqrt{2}-\dfrac{1}{2}\)

m) \(=\sqrt{\left(2\sqrt{2}+\dfrac{1}{4}\right)^2}=2\sqrt{2}+\dfrac{1}{4}\)

a: Ta có: BC⊥BA tại B

nên BC là tiếp tuyến của (A;AB)

b: Xét (A) có 

CB là tiếp tuyến

CD là tiếp tuyến

Do đó: CB=CD
hay C nằm trên đường trung trực của BD(1)

Ta có: AB=AD

nên A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AC là đường trung trực của BD

hay AC\(\perp\)BD

12 tháng 1 2022

Giúp mình luôn câu c d được không:((( sắp hết h rồi mà không bt làm

2:

1+cot^2a=1/sin^2a

=>1/sin^2a=1681/81

=>sin^2a=81/1681

=>sin a=9/41

=>cosa=40/41

tan a=1:40/9=9/40

14 tháng 12 2021

\(1,ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{3x-6}+x-2-\left(\sqrt{2x-3}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x-6}}+\left(x-2\right)-\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1=0\left(1\right)\end{matrix}\right.\)

Với \(x>2\Leftrightarrow-\dfrac{2}{\sqrt{2x-3}+1}>-\dfrac{2}{1+1}=-1\left(3x-6\ne0\right)\)

\(\Leftrightarrow\left(1\right)>0-1+1=0\left(vn\right)\)

Vậy \(x=2\)

14 tháng 12 2021

\(2,ĐK:x\ge-1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow a^2+b^2=x^2+2\)

\(PT\Leftrightarrow2a^2+2b^2-5ab=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

Với \(a=2b\Leftrightarrow x+1=4x^2-4x+4\left(vn\right)\)

Với \(b=2a\Leftrightarrow4x+4=x^2-x+1\Leftrightarrow x^2-5x-3=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\left(tm\right)\\x=\dfrac{5-\sqrt{37}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy ...

7 tháng 7 2021

Bài 2 :

a, Ta có đồ thị :

b, Ta có : \(\tan a=3\)

\(\Rightarrow a\approx71,5^o\)

6 tháng 12 2021

KO BIẾT LÀM NHA BẠN!!!!!!!!!!!!!!!!

30 tháng 9 2021

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:

\(AH^2=BH.HC\)

\(\Rightarrow x^2=5^2\Rightarrow x=5\left(cm\right)\)

\(AB^2=BH.BC\)

\(\Rightarrow AB=\sqrt{BH.BC}=\sqrt{5.\left(5+5\right)}\)

\(\Rightarrow y=5\sqrt{2}\left(cm\right)\)

30 tháng 9 2021

Cảm ơn bạn!