K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 17:

a) Ta có: \(M=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)^2}\)

\(=\dfrac{2}{\left(\sqrt{x}+1\right)^2}\)

5 tháng 8 2021

22,

1, Đặt √(3-√5) = A

=> √2A=√(6-2√5)

=> √2A=√(5-2√5+1)

=> √2A=|√5 -1|

=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)

=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)

2, Đặt √(7+3√5) = B

=> √2B=√(14+6√5)

 => √2B=√(9+2√45+5)

=> √2B=|3+√5|

=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)

=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)

3, 

Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C

=> √2C=√(18+2√17) - √(18-2√17) -\(2\)

=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)

=> √2C=√17+1- √17+1 -\(2\)

=> √2C=0

=> C=0

26,

|3-2x|=2\(\sqrt{5}\)

TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)

3-2x=2\(\sqrt{5}\)

-2x=2\(\sqrt{5}\) -3

x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)

TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)

3-2x=-2\(\sqrt{5}\)

-2x=-2√5 -3

x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)

Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)

 

 

 

 

 

 

6 tháng 8 2021

2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12

3, \(\sqrt{x^2-2x+1}\)=7

⇔ |x-1|=7 

TH1: x-1≥0 ⇔ x≥1

x-1=7 ⇔ x=8 (TMĐK)

TH2: x-1<0 ⇔ x<1

x-1=-7 ⇔ x=-6 (TMĐK)

Vậy x=8, -6

4, \(\sqrt{\left(x-1\right)^2}\)=x+3

⇔ |x-1|=x+3

TH1: x-1≥0 ⇔ x≥1

x-1=x+3 ⇔ 0x=4 (KTM)

TH2: x-1<0 ⇔ x<1

x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)

Vậy x=-1

 

27 tháng 6 2021

16. \(\dfrac{2\sqrt{x}-4}{3\sqrt{x}-4}-\dfrac{4+2\sqrt{x}}{\sqrt{x}-2}+\dfrac{x+13\sqrt{x}-20}{3x-10\sqrt{x}+8}\)

=\(\dfrac{\left(2\sqrt{x}-4\right)\left(\sqrt{x}-2\right)-\left(4+2\sqrt{x}\right)\left(3\sqrt{x}-4\right)+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)

=\(\dfrac{2x-8\sqrt{x}+8-\left(4\sqrt{x}+6x-16\right)+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)

=\(\dfrac{2x-8\sqrt{x}+8-4\sqrt{x}-6x+16+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)

=\(\dfrac{-3x+\sqrt{x}+4}{\left(3\sqrt{x}-4\right)\left(x+2\right)}\)

=\(\dfrac{-\left(3x+3\sqrt{x}-4\sqrt{x}-4\right)}{\left(3\sqrt{x}-4\right)\left(x+2\right)}\)

=\(\dfrac{-\left(3\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}+2\right)}\)=\(\dfrac{-\sqrt{x}-1}{\sqrt{x}+2}\)

27 tháng 6 2021

14.

=\(\dfrac{-\left(7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)+\(\dfrac{\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)+\(\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

=\(\dfrac{-7x-21\sqrt{x}-14}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)+\(\dfrac{10x-12\sqrt{x}+2}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)+\(\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

=\(\dfrac{-7x-21\sqrt{x}-14+10x-12\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

=\(\dfrac{3x-6\sqrt{x}}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)=\(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

17.

26 tháng 6 2021

\(\dfrac{3}{1-\sqrt{2}}+\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{3\left(\sqrt{2}+1\right)-\left(\sqrt{2}-1\right)^2}{-1}=-\left(3\sqrt{2}+3-3+2\sqrt{2}\right)=-5\sqrt{2}\)

\(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}+\dfrac{6}{1-\sqrt{5}}=\dfrac{\left(\sqrt{5}-1\right).\left(1-\sqrt{5}\right)+6.\left(\sqrt{5}+1\right)}{-4}=\dfrac{6-2\sqrt{5}-6\sqrt{5}-6}{4}=\dfrac{-8\sqrt{5}}{4}=-2\sqrt{5}\)

\(\dfrac{\sqrt{2}-\sqrt{3}}{2-\sqrt{6}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}+2}=\dfrac{\left(\sqrt{2}-\sqrt{3}\right).\left(\sqrt{6}+2\right)+\left(\sqrt{3}-\sqrt{2}\right).\left(2-\sqrt{6}\right)}{-2}=\dfrac{2\left(\sqrt{12}-\sqrt{18}\right)}{-2}=\sqrt{18}-\sqrt{12}\)

\(\dfrac{-31+8\sqrt{x}-x}{x-8\sqrt{x}+15}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{5-\sqrt{x}}\)

\(=\dfrac{-31+8\sqrt{x}-x}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}+\dfrac{3\sqrt{x}-1}{\sqrt{x}-5}\)

\(=\dfrac{-31+8\sqrt{x}-x-x+25+3x-9\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)

 

 

26 tháng 6 2021

bài 14 mà bạn

 

21 tháng 12 2022

Giúp em vs😢

10 tháng 8 2016

\(a=x+\sqrt{17-x^2}\)

\(a^2=x^2+17-x^2+2x\sqrt{17-x^2}=17+2x\sqrt{17-x^2}\)

\(x\sqrt{17-x^2}=\frac{a^2-17}{2}\)

\(pt\rightarrow a+\frac{a^2-17}{2}=9\Leftrightarrow a^2+2a-35=0\Leftrightarrow\orbr{\begin{cases}a=5\\a=-7\end{cases}}\)

Thay vào, chuyển vế, bình phương ,,,,,,

10 tháng 8 2016
Đặt a = x b = √(17 - x^2) ta có a+b+ab=9 và a^2 + b^2 = 17 Giải ra ta được a=1và b=4 hoặc a=4 và b=1 thế vào là giải ra. Nhớ đối chiều điều kiện
26 tháng 7 2021

Bài 2 

b, `\sqrt{3x^2}=x+2`          ĐKXĐ : `x>=0`

`=>(\sqrt{3x^2})^2=(x+2)^2`

`=>3x^2=x^2+4x+4`

`=>3x^2-x^2-4x-4=0`

`=>2x^2-4x-4=0`

`=>x^2-2x-2=0`

`=>(x^2-2x+1)-3=0`

`=>(x-1)^2=3`

`=>(x-1)^2=(\pm \sqrt{3})^2`

`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$

`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$

Vậy `S={1+\sqrt{3};1-\sqrt{3}}`

26 tháng 7 2021

mình nghĩ ĐKXĐ là như này : 

x+2≥0

➩ x≥-2

có phải k

3 tháng 8 2016

\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{17-2\sqrt{72}}+\sqrt{17+2\sqrt{72}}..\)

\(\sqrt{9-2\sqrt{9.8}+8}+\sqrt{9+2\sqrt{9.8}+8}.\)

=\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}.\)

\(\left|3-2\sqrt{2}\right|+3+2\sqrt{2}=3-2\sqrt{2}+3+2\sqrt{2}=6.\)( vì 3 > 2 căn 2 )

3 tháng 8 2016

\(\sqrt{5+\frac{y}{x}}-\left(-b\right)\)

26 tháng 6 2021

14, \(\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\)

\(=\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}\)

\(=\frac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)+\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(3\sqrt{x}+14\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}+14}{5\sqrt{x}-1}\)

27 tháng 6 2021

thank