Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2>=0\) với mọi x
\(8x>=0\) với mọi x
<=> 20<0
Nên P(x) vô nghiệm
Chứng minh đa thức P(x) = 2(x-3)^2 + 5 không có nghiệm nha mấy chế
Tui viết sai đề :v
a) Ta có no của đa thức f(x) = 0
\(\Leftrightarrow\frac{3}{2}x-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{3}{2}x=\frac{1}{4}\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy no của đa thức f(x)=0 \(\Leftrightarrow x=\frac{1}{6}\)
b) Ta có no của đa thức g(x) = 0
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x.\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Vậy no của đa thức g(x) = 0 \(\Leftrightarrow x\in\left\{0;\frac{1}{2}\right\}\)
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
M(x)= \(x^4+2x^2+1=x^4+x^2+x^2+1=\left(x^4+x^2\right)+\left(x^2+1\right)=x^2\left(x^2+1\right)+\left(x^2+1\right)=\left(x^2+1\right)\left(x^2+1\right) \)
hay M=(x^2+1)^2
x^2 >= 0 nên (x^2+1)>=1
=> M >= 1^2
=> M vô nghiệm
Cho mik hỏi là ở bước thứ 3, \(x^4\) bạn tách để đâu vậy. Mik không hiểu đoạn đó
Câu 1 :
Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+1\right)^2-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)
Câu 2 :
\(q\left(x\right)=x^2-10x+29\)
\(=\left(x-5\right)^2+4\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)
Vậy đa thức trên ko có nghiệm
dễ mà
câu 1
f(x)=x^2+2x-3
ta có f(x)=0
suy ra x^2+2x-3=0
tương đương:x^2-x+3x-3=0
tương đương:x(x-1)+3(x-1)=0
tương đương: (x-1)(x+3)=0
tương đương: x-1=0 x=1
x+3=0 x=-3
vậy đa thức f(x) có hai nghiệm là 1 và -3
câu 2: x^2-10x+29
tương đương: x^2-5x-5x+25+4
tương đương: x(x-5)-5(x-5)+4
tương đương: (x-5)(x-5)+4
tương đương: (x-5)^2+4
vì (x-5)^2> hoặc bằng 0 với mọi x
4>0
suy ra x^2-10x+29 vô nghiệm
|x-2| là một số nguyên dương nên |x-2| > 0. với mọi x
ta có : (x-1)2lớn hơm hoặc bằng 0. với mọi x
suy ra (x-2)2+|x-2| luôn lớn hơn 0. với mọi x
suy ra đa thức trên k có nghiệm
đơn giản thôi, muốn cm nó ko có nghiệm thì phải chứng minh nó khác 0
Có: (x-1)^2+ /x-2/ =0 .Vvì (x-1)^2 >= 0; /x-2/ >= 0 => (x-1)^2 = 0; /x-2/= 0 thì tổng mới =0.
(x-1)^2 = 0 => x=1 (1)
/x-2/=0=> x=2 (2)
Từ (1); (2) => vô lí.
Vậy ko tìm đc nghiệm
`Q(x) = -(x + 5)^2 - 1`
`<=> -(x + 5)^2 - 1 = 0`
`<=> -(x + 5)(x + 5) - 1 = 0`
`<=> -(x^2 + 5x + 5(x + 5)) - 1 = 0`
`<=> -(x^2 + 10x + 25) - 1 = 0`
`=>` Đa thức trên vô nghiệm
Bạn giải theo cách của lớp mấy vậy ạ, mình học lớp 7