\(\sqrt{a^2+a^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

Bài 2 :

b) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) (1)

ĐKXĐ : \(x\ge1\)

Pt(1) tương đương :

\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=2\) (*)

Xét \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\)

\(\Rightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\)

Khi đó pt (*) trở thành :

\(\sqrt{x-1}+1+\sqrt{x-1}-1=2\)

\(\Leftrightarrow2\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\) ( Thỏa mãn )

Xét \(1\le x< 2\) thì \(x\ge2\Rightarrow\sqrt{x-1}-1< 0\)

Nên : \(\left|\sqrt{x-1}-1\right|=1-\sqrt{x-1}\). Khi đó pt (*) trở thành :

\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

\(\Leftrightarrow2=2\) ( Luôn đúng )

Vậy tập nghiệm của phương trình đã cho là \(S=\left\{x|1\le x\le2\right\}\)

15 tháng 8 2020

Bài 1 : 

a) ĐKXĐ : \(-1\le a\le1\)

Ta có : \(Q=\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}\right)\)

\(=\left(\frac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right)\cdot\frac{\sqrt{1-a^2}}{3}\)

\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\cdot\frac{\sqrt{\left(1-a\right)\left(1+a\right)}}{3}\)

\(=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\)

Vậy \(Q=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\) với \(-1\le a\le1\)

b) Với \(a=\frac{\sqrt{3}}{2}\) thỏa mãn ĐKXĐ \(-1\le a\le1\)nên ta có :

\(\hept{\begin{cases}1-a=1-\frac{\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{\left(\sqrt{3}-1\right)^2}{2^2}\\1-a^2=1-\frac{3}{4}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\sqrt{1-a}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2^2}}=\left|\frac{\sqrt{3}-1}{2}\right|=\frac{\sqrt{3}-1}{2}\\\sqrt{1-a^2}=\frac{1}{2}\end{cases}}\)

Do đó : \(Q=\frac{\left(3+\frac{1}{2}\right)\cdot\frac{\sqrt{3}-1}{2}}{3}=\frac{5\sqrt{3}-5}{12}\)

11 tháng 5 2018

a) \(3\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)

\(\Leftrightarrow3\sqrt{x}-6\sqrt{x}+4\sqrt{x}=5\)

\(\Leftrightarrow\sqrt{x}=5\)

<=>  x = 25

b) pt <=> \(\left(x^2+5\right)=\left(x+1\right)^2\)

        <=>  \(\left(x^2+5\right)=x^2+2x+1\)

        <=>   2x = 4

         <=>  x = 2 

c)  pt <=> \(45-14\sqrt{x}+x=x-11\)

         <=> \(45+11=14\sqrt{x}\)

<=> \(56=14\sqrt{x}\)

<=> \(4=\sqrt{x}\)

<=>  x = 16

p/s : Cậu tự đặt điều kiện nhé

12 tháng 7 2017

a. Ta thấy \(\left(a\sqrt{5}\right)^2=\left(a\sqrt{3}\right)^2+\left(a\sqrt{2}\right)^2\Rightarrow AB^2=BC^2+AC^2\)

\(\Rightarrow\Delta ABC\)vuông tại C

b. \(\sin B=\frac{AC}{AB}=\frac{\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{10}}{5};\cos B=\frac{CB}{AB}=\frac{\sqrt{3}}{\sqrt{5}}=\frac{\sqrt{15}}{5}\)

\(\tan B=\frac{AC}{AB}=\frac{\sqrt{6}}{3};\cot B=\frac{\sqrt{6}}{2}\)

\(\sin A=\cos B=\frac{\sqrt{15}}{5};\cos A=\sin B=\frac{\sqrt{10}}{5}\)

\(\tan A=\cot B=\frac{\sqrt{6}}{2};\cot A=\tan B=\frac{\sqrt{6}}{3}\) 

12 tháng 7 2017

Thanks bạn nhìu

20 tháng 7 2020

Bài làm:

a) \(A=\sqrt{4}-2\sqrt{3}+\sqrt{7}-4\sqrt{3}\)

\(A=2+\sqrt{7}-6\sqrt{3}\)

b) \(B=\sqrt{3}+\sqrt{8}+\sqrt{3}-\sqrt{8}\)

\(B=2\sqrt{3}\)

20 tháng 7 2020

Ta có : \(A=\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{2^2-2.2\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\sqrt{3}-1+2-\sqrt{3}=1\)

Ta có : \(B=\sqrt{3+\sqrt{8}+\sqrt{3-\sqrt{8}}}\)

\(=\sqrt{3+\sqrt{8}+\sqrt{2-2\sqrt{2}+1}}\)\(=\sqrt{3+\sqrt{8}+\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(=\sqrt{3+2\sqrt{2}+\sqrt{2}-1}\) \(=\sqrt{2+3\sqrt{2}}\)

Câu 3:

\(C=\dfrac{3\sqrt{x}-x+x+9}{9-x}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)

Để C<-1 thì C+1<0

=>-3 căn x+2 căn x+4<0

=>-căn x<-4

=>x>16