Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, vì tgABC là tg cân tại A có AH là đường cao
=> AH là đường phân giác của gBAC
xét tgAHB và tgAHC có AB=AC
gBAH=gCAH
AH là cạnh chung
=> tgAHB=tgAHC (c.g.c)
b, vì tgABC là tg cân tại A có AH là đường cao
=> AH là đường trung tuyến
=> H là trung điểm của BC
c, bn xem lại đề bài câu c giúp mk
mk ko hiểu lắm
-14/18<0
0<-30/-40=3/4=9/12<9/11
9/11<1<-12/-8
=>-14/18<0<-30/-40<9/11<-12/-8
Câu 3:
a: \(BD=\sqrt{BC^2-DC^2}=4\left(cm\right)\)
b: \(\widehat{A}=180^0-2\cdot70^0=40^0< \widehat{B}\)
nên BC<AC=AB
c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔEBC=ΔDCB
d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
Câu 2
a) Thay y = -2 vào biểu thức đã cho ta được:
2.(-2) + 3 = -1
Vậy giá trị của biểu thức đã cho tại y = -2 là -1
b) Thay x = -5 vào biểu thức đã cho ta được:
2.[(-5)² - 5] = 2.(25 - 5) = 2.20 = 40
Vậy giá trị của biểu thức đã cho tại x = -5 là 40
Lời giải:
a. Với $n$ nguyên khác -3, để $B$ nguyên thì:
$2n+9\vdots n+3$
$\Rightarrow 2(n+3)+3\vdots n+3$
$\Rightarrow 3\vdots n+3$
$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$
b.
$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$
Để $B_{\max}$ thì $\frac{3}{n+3}$ max
Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất
Tức là $n+3=1$
$\Leftrightarrow n=-2$
c. Để $B$ min thì $\frac{3}{n+3}$ min
Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất
Tức là $n+3=-1$
$\Leftrightarrow n=-4$
c) \(\left(\frac{1}{2}\right)^x=\frac{1}{64}\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^6\)
\(\Leftrightarrow x=6\)
Trả lời:
c, \(\left(\frac{1}{2}\right)^x=\frac{1}{64}\)
\(\Rightarrow\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^6\)
\(\Rightarrow x=6\)
Vậy \(x=6\)