Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\left|x-1\right|+\left|x-9\right|\)
\(E=\left|x-1\right|+\left|9-x\right|\ge\left|x-1+9-x\right|=8\)
Min E = 8
\(\Leftrightarrow1\le x\le9\)
a, Ta có: \(A=\left|x+2\right|+\left|x-6\right|=\left|x+2\right|+\left|6-x\right|\ge\left|x+2+6-x\right|=8\)
Dấu "=" xảy ra khi \(\left(x+2\right)\left(6-x\right)\ge0\Rightarrow-2\le x\le6\)
Vậy MinA = 8 khi \(-2\le x\le6\)
b, Ta có: \(B=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|=\left(\left|x+5\right|+\left|7-x\right|\right)+\left(\left|x+2\right|+\left|8-x\right|\right)\)
\(\ge\left|x+5+7-x\right|+\left|x+2+8-x\right|=12+10=22\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+5\right)\left(7-x\right)\ge0\\\left(x+2\right)\left(8-x\right)\ge0\end{cases}\Rightarrow\hept{\begin{cases}-5\le x\le7\\-2\le x\le8\end{cases}}\Rightarrow-2\le x\le8}\)
Vậy MinB = 22 khi \(-2\le x\le8\)
c, Ta có: \(C=\left|x-3\right|+\left|x-4\right|+\left|x-5\right|=\left(\left|x-3\right|+\left|5-x\right|\right)+\left|x-4\right|\)
Vì \(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=2\forall x\)
Và \(\left|x-4\right|\ge0\forall x\)
\(\Rightarrow B=\left(\left|x-3\right|+\left|x-5\right|\right)+\left|x-4\right|\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-3\right)\left(5-x\right)\ge0\\x-4=0\end{cases}\Rightarrow\hept{\begin{cases}3\le x\le5\\x=4\end{cases}\Rightarrow}x=4}\)
Vậy MinC = 2 khi x = 4
(x+1)^2>=0 và (y-1)^2>=0
=>C>=-10
Dấu = xảy ra khi x+1=0,y-1=0
=>x=-1,y=1
Vậy C=-10 khi x=-1,y=1
k cho mk nha
Áp dụng bất đẳng thức |m|+ |n|≥ |m + n| .Dấu = xảy ra khi m,n cùng dấu
A ≥ |x − a + x − b|+ |x − c + x − d| = |2x − a − b|+ |c + d − 2x| ≥ |2x − a − b − 2x + c + d| =|c + d − a − b|
Dấu = xảy ra khi x − a và x − b cùng dấu hay(x ≤ a hoặc x ≥ b)
x − c và x − d cùng dấu hay(x ≤ c hoặc x ≥ d)
2x − a − b và c + d − 2x cùng dấu hay (x + b ≤ 2x ≤ c + d)
Vậy Min A =c+d-a-b khi b ≤ x ≤ c
~ Học tốt ~ K cho mk nha. Thank you.
\(A=\dfrac{1}{2}\left(x-3\right)^2+10\ge10\\ A_{min}=10\Leftrightarrow x-3=0\Leftrightarrow x=3\)
\(A=\dfrac{1}{2}\left(x-3\right)^2+10\ge10\forall x\)
Dấu '=' xảy ra khi x=3
c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)
Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)
Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)
đề là j thế bn??
\(C=\left(x+1\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi x=-1