\(giải giúp mik câu 4 nha\)undefined
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4: 

\(\Leftrightarrow3x-6-1⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1\right\}\)

hay \(x\in\left\{3;1\right\}\)

12 tháng 4 2017

a, Ta có: \(A=\left|x-1\right|+\left|x-2017\right|=\left|x-1\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A\ge\left|x-1+2017-x\right|=\left|-2016\right|=2016\)

Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\2017-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\le2017\end{matrix}\right.\Rightarrow1\le x\le2017\)

Vậy \(MIN_A=2016\) khi \(1\le x\le2017\)

b, Ta có: \(\left\{{}\begin{matrix}\left(x-5\right)^2\ge0\\\left|x-5\right|\ge0\end{matrix}\right.\Rightarrow\left(x-5\right)^2+\left|x-5\right|\ge0\)

\(\Rightarrow B=\left(x-5\right)^2+\left|x-5\right|+2014\ge2014\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left|x-5\right|=0\end{matrix}\right.\Rightarrow x=5\)

Vậy \(MIN_B=2014\) khi x = 5

12 tháng 4 2017

b may cho chú là chung nghiệm là x=5 nếu (x-6)^2+|x-5| thì sao? cần phải nhớ (x-6)^2=|x-6|^2 sau đó áp dụng |a|+|b|>=|a+b|

16 tháng 9 2017

Ta có :

\(\left|x-1,5\right|+\left|2,5-x\right|=0\)

\(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-1,5\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) (vô lí)

Vậy ko tìm dc x thỏa mãn theo yêu cầu

16 tháng 9 2017

Có tìm đc gt thỏa mãn:

\(\left\{{}\begin{matrix}x_1=1,5\\x_2=2,5\end{matrix}\right.\)

28 tháng 7 2017

c, \(\left(7-3x\right)\left(2x+1\right)=0\)

=> \(7-3x=0\) hoặc \(2x+1=0\)

\(3x=7-0\) hoặc \(2x=0-1\)

\(3x=7\) hoặc \(2x=-1\)

\(x=7:3\) hoặc \(x=-1:2\)

\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)

Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)

12 tháng 3 2017

A=a=b=c=0 đó bạn ( mình ko bt cách giảihehe)

13 tháng 3 2017

Ta có:\(\left(-5a^2b^4c^6\right)^7-\left(9a^3bc^5\right)^8=0\)

\(\left(-5\right)^7a^{14}b^{28}c^{42}-9^8a^{24}b^8c^{40}=0\)

\(a^{14}b^{28}c^{42}\ge0\Rightarrow\left(-5\right)^7a^{14}b^{28}c^{42}\le0\)

\(a^{24}b^8c^{40}\ge0\Rightarrow9^8a^{24}b^8c^{40}\ge0\)

\(\Rightarrow\left(-5\right)^7a^{14}b^{28}c^{42}-9^8a^{24}b^8c^{40}\le0\)

Mà VP=0

Dấu "=" xảy ra khi

\(\left(-5\right)^7a^{14}b^{28}c^{42}=0\)\(9^8a^{24}b^8c^{40}=0\)

\(\Rightarrow a=b=c=0\)

\(\Rightarrow A=a+b+c=0+0+0=0\)

11 tháng 6 2017

F=|x-1|+|x-2|+|x-3|+...+|x-100|=|x-1|+|2-x|+|x-3|+...+|100-x|

Áp dụng bđt |a|+|b|\(\ge\)|a+b|, ta có:

F=|x-1|+|2-x|+|x-3|+...+|100-x| \(\ge\) |x-1+2-x+x-3+...+100-x| = |50| = 50

=> F\(\ge\)50 => \(Min_F=50\)

P/s: mấy thánh toán đi ngang cho mik hỏi giải vậy có đúng hog?

11 tháng 6 2017

\(F=\left|x-1\right|+\left|x-2\right|+....+\left|x-99\right|+\left|x-100\right|\)

\(F=\left(\left|x-1\right|+\left|x-100\right|\right)+\left(\left|x-2\right|+\left|x-99\right|\right)+.....+\left(\left|x-50\right|+\left|x-51\right|\right)\)

\(F=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\)

(do \(\left|-A\left(x\right)\right|=\left|A\left(x\right)\right|\))

Với mọi giá trị của \(x\in R\) ta có:

\(\left|x-1\right|\ge1;\left|x-2\right|\ge x-2;.....;\left|99-x\right|\ge99-x;\left|100-x\right|\ge100-x\)

\(\Rightarrow\left|x-1\right|+\left|100-x\right|\ge x-1+100-x\ge99\)

\(\left|x-2\right|+\left|99-x\right|\ge x-2+99-x\ge97\).............

\(\left|x-50\right|+\left|51-x\right|\ge x-50+51-x\ge1\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge99+97+.....+3+1\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge\dfrac{\left(99+1\right).50}{2}\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge2500\)

Dấu "=" sảy ra khi:

\(\left\{{}\begin{matrix}x-50\ge0\\51-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge50\\x\le51\end{matrix}\right.\Rightarrow50\le x\le51\)

Vậy GTNN của biểu thức F là 2500 đạt được khi và chỉ khi \(50\le x\le51\)

Mình cũng không chắc đâu! Chúc bạn học tốt!!!

16 tháng 9 2017

\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)

\(\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\)

\(\Rightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)

\(x=\dfrac{1}{4}-\dfrac{1}{2}\)

\(x=-\dfrac{1}{4}\)

1 tháng 8 2019

Ta có:

\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)

=> \(\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{matrix}\right.\)

Vậy ...

7 tháng 4 2017

Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0

[y-4] \(\ge\) 0

Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1

Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0

Tự tính ra

7 tháng 4 2017

Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé

Xin lỗi nhiều tại mình o tìm được kí hiệu đó

21 tháng 3 2017

câu hỏi đâu ?

21 tháng 3 2017

ben tren y cho co tu chung minh y

8 tháng 8 2017

tự làm đi nhé lương.k hehe

làm lâu rồi bạn ơi
leuleu