K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Mệnh đề phủ định: 27 không là số nguyên tố

Mệnh đề khẳng định sai

Mệnh đề phủ định đúng

14 tháng 3 2022

ảnh ngược rồi

NV
14 tháng 3 2022

\(\Delta=\left(2m-1\right)^2-4\left(3m-4\right)=4m^2-16m+17=4\left(m-2\right)^2+1>0;\forall m\)

\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m

b.

Để biểu thức đề bài xác định \(\Rightarrow x_1;x_2\ne1\Leftrightarrow1+2m-1+3m-4\ne0\Rightarrow m\ne\dfrac{4}{5}\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m+1\\x_1x_2=3m-4\end{matrix}\right.\)

\(\dfrac{x_1^2}{1-x_1}+\dfrac{x_2^2}{1-x_2}=2\Leftrightarrow\dfrac{x_1^2-x_1^2x_2+x_2^2-x_1x_2^2}{\left(1-x_1\right)\left(1-x_2\right)}=2\)

\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=2\)

\(\Leftrightarrow\dfrac{\left(-2m+1\right)^2-2\left(3m-4\right)-\left(3m-4\right)\left(-2m+1\right)}{3m-4-\left(-2m+1\right)+1}=2\)

\(\Leftrightarrow\dfrac{10m^2-21m+13}{5m-4}=2\)

\(\Rightarrow10m^2-21m+13=10m-8\)

\(\Leftrightarrow10m^2-31m+21=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{21}{10}\end{matrix}\right.\)

11 tháng 1 2023

Ta có M là trung điểm của AC nên Cách phân tích một vecto theo hai vecto không cùng phương cực hay, chi tiết - Toán lớp 10

          K là trung điểm của BC nên Cách phân tích một vecto theo hai vecto không cùng phương cực hay, chi tiết - Toán lớp 10

Cách phân tích một vecto theo hai vecto không cùng phương cực hay, chi tiết - Toán lớp 10

                      Bạn tự vẽ hình minh họa nha :>

11 tháng 1 2023

Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.

Ta có  =  =>  = 

 = - = -  = -

Theo quy tắc 3 điểm đối với tổng vec-tơ:

+ =>  =  = ().

AK là trung tuyến thuộc cạnh BC nên

 = 2 => += 2

Từ đây ta có  = + =>  = - - .

BM là trung tuyến thuộc đỉnh B nên:

= 2 => -  + = 2

=>  =  + .

NV
12 tháng 1 2022

Pt hoành độ giao điểm:

\(x^2+2mx+2m=2x+3\)

\(\Leftrightarrow x^2-2x-3+2m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)+2m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2m+3\end{matrix}\right.\)

Do \(-1< 2\) nên bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}-2m+3\ne-1\\-2m+3< 2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m\ne2\end{matrix}\right.\)

19 tháng 3 2021

ĐK: \(x\ge0\)

Dễ thấy \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\)

Khi đó bất phương trình tương đương:

\(x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)

\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)

\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)

\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\)

19 tháng 3 2021

Nguyễn Ngọc Hôm trước có câu tương tự mà nhỉ.

NV
29 tháng 12 2021

\(\Delta'=4-m\)

a. Phương trình vô nghiệm khi:

\(4-m< 0\Rightarrow m>4\)

b. Phương trình có 2 nghiệm pb khi: \(4-m>0\Rightarrow m< 4\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)

Không mất tính tổng quát, giả sử \(x_1=2x_2\)

\(\Rightarrow2x_2+x_2=4\Rightarrow x_2=\dfrac{4}{3}\Rightarrow x_1=\dfrac{8}{3}\)

\(\Rightarrow m=x_1x_2=\dfrac{32}{9}\)