Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác ADHE có ^ADH = ^AEH = ^DAE = 900
=> tứ giác ADHE là hcn
=> AH = DE (2 đường chéo bằng nhau)
b, Xét tam giác AHB và tam giác CHA ta có
^AHB = ^CHA = 900
^HAB = ^HCA ( cùng phụ ^HAC )
Vậy tam giác AHB~ tam giác CHA (g.g)
\(\dfrac{AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH^2=BH.CH\)
c, Xét tam giác AHD và tam giác ABH có
^ADH = ^AHB = 900
^A _ chung
Vậy tam giác AHD ~ tam giác ABH (g.g)
\(\dfrac{AH}{AB}=\dfrac{AD}{AH}\Rightarrow AH^2=AD.AB\)(1)
tương tự tam giác AEH ~ tam giác AHC (g.g)
\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AH^2=AE.AC\left(2\right)\)
Từ (1) ; (2) suy ra \(AD.AB=AE.AC\Rightarrow\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét tam giác ADE và tam giác ACB
^A _ chung
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\left(cmt\right)\)
Vậy tam giác ADE ~ tam giác ACB (c.g.c)
a,
Xét Δ ABH và Δ CBA, có :
\(\widehat{ABH}=\widehat{CAB}\) (góc chung)
\(\widehat{AHB}=\widehat{CAB}=90^o\)
=> Δ ABH ~ Δ CBA (g.g)
=> \(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)
=> \(AB^2=BH.BC\)
Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (Py - ta - go)
=> \(BC^2=15^2+20^2\)
=> BC = 25 (cm)
Ta có : \(AB^2=BH.BC\) (cmt)
=> \(15^2=BH.25\)
=> BH = 9 (cm)
Ta có : BC = BH + CH
=> 25 = 9 + CH
=> CH = 16 (cm)
b,
Xét Δ AMN và Δ ACB, có :
\(\widehat{MAN}=\widehat{CAB}=90^o\)
\(\widehat{MAN}=\widehat{CAB}\) (góc chung)
=> Δ AMN ~ Δ ACB (g.g)
=> \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
=> AM.AB = AN.AC
Ta có : \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
=> \(\dfrac{AB}{AC}=\dfrac{AN}{AM}\)
=> \(\dfrac{AN}{AM}=\dfrac{15}{20}=\dfrac{3}{4}\)
Vậy : ta có kết luận : Δ AMN = \(\dfrac{3}{4}\) Δ ACB
Câu 19:
\(=\dfrac{11x+x-18}{2x-3}=\dfrac{12x-18}{2x-3}=6\)
Câu 20:
\(=\dfrac{3x+5}{x\left(x-5\right)}+\dfrac{x-25}{5\left(x-5\right)}\)
\(=\dfrac{15x+25+x^2-25x}{5x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{5x\left(x-5\right)}=\dfrac{x-5}{5x}\)
-Bài 3:
2) -Áp dụng BĐT Caushy Schwarz ta có:
\(A=\dfrac{1}{x^3+3xy^2}+\dfrac{1}{y^3+3x^2y}\ge\dfrac{\left(1+1\right)^2}{x^3+3xy^2+3x^2y+y^3}=\dfrac{4}{\left(x+y\right)^3}\ge\dfrac{4}{1^3}=4\)-Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
1a.
$x^2-5x+6=x^2-2x-(3x-6)=x(x-2)-3(x-2)=(x-2)(x-3)$
1b.
$3x^2+9x-30=3(x^2+3x-10)=3(x^2-2x+5x-10)$
$=3[x(x-2)+5(x-2)]=3(x-2)(x+5)$
1c.
$x^2-3x+2=(x^2-x)-(2x-2)=x(x-1)-2(x-1)=(x-1)(x-2)$
1d.
$x^2-9x+18=x^2-3x-(6x-18)=x(x-3)-6(x-3)=(x-3)(x-6)$
1e.
$x^2-6x+8=x^2-2x-(4x-8)=x(x-2)-4(x-2)=(x-2)(x-4)$
1f.
$x^2-5x-14=x^2-7x+2x-14=x(x-7)+2(x-7)=(x+2)(x-7)$
1g.
$x^2+6x+5=(x^2+x)+(5x+5)=x(x+1)+5(x+1)=(x+1)(x+5)$
1h.
$x^2-7x+12=x^2-3x-(4x-12)=x(x-3)-4(x-3)=(x-3)(x-4)$
1i.
$x^2-7x+10=(x^2-2x)-(5x-10)=x(x-2)-5(x-2)=(x-2)(x-5)$
Bài 3:
a: \(A=\dfrac{3\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{3}{x-4}\)
b: Để A nguyên thì \(x-4\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{5;3;7;1\right\}\)
Bài 2:
a: \(=y\left(6x-y\right)\)
b: \(=x\left(y-2\right)+2\left(y-2\right)=\left(y-2\right)\left(x+2\right)\)
c: =(x+2)(x+5)
bài 2:
a. <=> x2 +5x-3x-15<x2-12
<=> x2-x2+5x-3x<-12+15
<=>2x<3
<=>x<\(\dfrac{3}{2}\)
S={x|x<\(\dfrac{3}{2}\)}
b. <=> 9(x-4) - 3(2x-5) < 2(5x+7)
<=> 9x-36 -6x+15 < 10x+14
<=>9x-6x-10x<14+36-15
<=> -7x<35
<=>x>-5
S={x|x>-5}
bài 3:
gọi chiều rộng ban đầu là x
chiều dài ban đầu là 3x
gọi chiều rộng lúc sau là x+6
chiều dài lúc sau là 3x-5
theo đề ta có:
x.3x +334= (x+6)(3x-5)
<=> 3x2+334= 3x2-5x+18x-30
<=> 3x2-3x2+5x-18x=-30-334
<=>-13x=-364
<=>x=28
Vậy chiều rộng ban đầu là 28m
chiều dài ban đầu là 3.28=84(m)