Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
b. \(Q=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
c. Để \(Q< 1\Rightarrow Q-1< 0\Leftrightarrow\frac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\Leftrightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow0\le x< 9\)
Vậy \(0\le x< 9\)thì \(Q< 1\)
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
mình giúp bài 3 cho
\(\sqrt{25x-125}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=6\left(ĐKXĐ:x\ge5\right)\)
\(< =>\sqrt{25\left(x-5\right)}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=6\)
\(< =>\sqrt{25}.\sqrt{x-5}-3\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-3.\frac{\sqrt{x-5}}{3}-\frac{1}{3}.3.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-\sqrt{x-5}-\sqrt{x-5}=6\)
\(< =>3\sqrt{x-5}=6< =>\sqrt{x-5}=2\)
\(< =>x-5=4< =>x=4+5=9\left(tmđk\right)\)
a) ĐKXĐ : \(x>0\)
b)Rút gọn căn thức bằng cách chia nhỏ số trong căn thành tích của các nhân tử đã biết là ra được kq :
\(\frac{\left(\sqrt{x}+2\right)^2}{2}\)
c) \(\frac{\left(\sqrt{x}+2\right)^2}{2}=\frac{3}{2}\)p/s = nhau có cùng mẫu => tử = nhau
=>\(\left(\sqrt{x}+2\right)^2=3\)
đến đây tự làm nốt nhé
p/s lười quá nên rút gọn ra đáp án luôn
A) ĐKXĐ : \(x\ge0\) và \(x\ne4\)
Rút gọn :\(A=\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{4\sqrt{x}}{4-x}\)
\(A=\frac{2\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{2+\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(A=\frac{4-2\sqrt{x}+2+\sqrt{x}+4\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(A=\frac{6+3\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(A=\frac{3\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(A=\frac{3}{2-\sqrt{x}}\)
b) thay \(x=7+4\sqrt{3}\) vào A
ta được :\(A=\frac{3}{2-\sqrt{7+4\sqrt{3}}}=\frac{3}{2-2+\sqrt{3}}=\frac{3}{\sqrt{3}}\)
vậy vói \(x=7+4\sqrt{3}\) thì \(A=\frac{3}{\sqrt{3}}\)
c)với\(x\ge0\) và \(x\ne4\)
Để \(A=-\frac{3}{7}\Leftrightarrow\frac{3}{2-\sqrt{x}}=-\frac{3}{7}\)
\(\Leftrightarrow3.7=-3\left(2-\sqrt{x}\right)\)
\(\Leftrightarrow21=-6+3\sqrt{x}\)
\(\Leftrightarrow21+6=3\sqrt{x}\)
\(\Leftrightarrow27=3\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=9\)
\(\Leftrightarrow x=81\)
Vậy để\(A=-\frac{3}{7}\Leftrightarrow x=81\)