Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2cos4x\left(cos2x-sin2x\right)=0\)
\(\Leftrightarrow cos4x=0\) (do \(cos4x=cos^22x-sin^22x\) đã bao hàm \(cos2x-sin2x\))
\(\Rightarrow4x=\dfrac{\pi}{2}+k\pi\)
\(\Rightarrow x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)
\(lim\left(\sqrt[3]{n^3+4}-\sqrt[3]{n^3-1}\right)\)
\(=lim\left(\sqrt[3]{1+\dfrac{4}{n^3}}-\sqrt[3]{1-\dfrac{1}{n^3}}\right)=\sqrt[3]{1}-\sqrt[3]{1}=0\)
Có: `-C_2021 ^0 +C_2021 ^1 -C_2021 ^2 +....+C_2021 ^2019-C_2021 ^2020 -C_2021 ^2021 =-1-1=-2`
Mà `C_2021 ^0 +C_2021 ^1 +C_2021 ^2 +....+C_2021 ^2019 +C_2021 ^2020 +C_2021 ^2021 =2^2021`
`=>2(C_2021 ^1 + C_2021 ^3 +C_2021 ^5 +...+C_2021 ^2017 + C_2021 ^2019 )=-2+2^2021`
`=>C_2021 ^1 + C_2021 ^3 +...+C_2021 ^2017 + C_2021 ^2019 =-1+2^2020`