K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
17 tháng 5 2019

3. \(A=\frac{2014x^2-2x\cdot2014+2014^2}{2014x^2}\)

\(=\frac{2013x^2+\left(x^2-2x\cdot2014+2014^2\right)}{2014x^2}\)

\(=\frac{2013}{2014}+\frac{\left(x-2014\right)^2}{2014x^2}\)\(\ge\frac{2013}{2014}\forall x\)

\(A=\frac{2013}{2014}\) \(\Leftrightarrow\frac{\left(x-2014\right)^2}{2014x^2}=0\Leftrightarrow x=2014\)

Vậy Min A = 2013/2014 <=> x = 2014

23 tháng 2 2022

a, Thay m=0 vào pt ta có:

\(x^2-x+1=0\)

\(\Rightarrow\) pt vô nghiệm 

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

4 tháng 8 2021

\(a,m=3=>x^2+3x-2=0\)

\(\Delta=3^2-4\left(-2\right)=17>0\)

pt có 2 nghiệm pb \(\left[{}\begin{matrix}x1=\dfrac{-3+\sqrt{17}}{2}\\x2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)

b,\(\Delta=m^2-4\left(-2\right)=m^2+8>0\)

=> pt đã cho luôn có 2 nghiệm phân biệt x1,x2 với mọi m

theo vi ét \(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=-2\end{matrix}\right.\)

có \(x1^2x2+x2^2x1=2014< =>x1x2\left(x1+x2\right)=2014\)

\(< =>-2\left(-m\right)=2014< =>m=1007\)

a) Thay m=3 vào phương trình, ta được:

\(x^2+3x-2=0\)

\(\Delta=3^2-4\cdot1\cdot\left(-2\right)=9+8=17\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{17}}{2}\\x_2=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)

10 tháng 5 2021

a) Với m = 5 phương trình đã cho trở thành 

x2 - 8x + 7 = 0 

Dễ thấy phương trình trên có a + b + c = 0 nên có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 7

Vậy với m = 5 thì phương trình đã cho có tập nghiệm S = { 1 ; 7 }

b) Ta có : Δ = b2 - 4ac = [ -2( m - 1 ) ]2 - 4( m + 2 )

= 4( m2 - 2m + 1 ) - 4m + 8

= 4m2 - 12m + 12 = 4( m - 3/2 )2 + 3 ≥ 3 > 0 ∀ m

=> Phương trình đã cho luôn có hai nghiệm phân biệt với mọi số thực m

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=m+2\end{cases}}\)

Ta có : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\Leftrightarrow\frac{x_1^2}{x_1x_2}+\frac{x_2^2}{x_1x_2}=4\)

\(\Rightarrow x_1^2+x_2^2=4x_1x_2\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)

\(\Rightarrow\left(2m-2\right)^2-6\left(m+2\right)=0\)

\(\Leftrightarrow4m^2-8m+4-6m-12=0\Leftrightarrow2m^2-7m-4=0\)

Đến đây dễ rồi bạn tự làm tiếp heng :)

13 tháng 2 2022

giúp mình bài này với ah.

14 tháng 2 2022

cho hỏi có phải bạn đang làm đề amsterdam phải không =)))

23 tháng 2 2022

a, Thay m=3 vào pt ta có:

\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)

b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

 

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

NV
12 tháng 3 2023

\(\Delta'=\left(m-1\right)^2+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{2}>0;\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

a.

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4\left(m-1\right)^2+2\left(m+3\right)=4m^2-6m+10\)

\(=4\left(m-\dfrac{3}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{3}{4}\)

Dấu = xảy ra khi \(m=\dfrac{3}{4}\)

b.

\(x_1^2+x_2^2=8m^3-8m^2\)

\(\Leftrightarrow4m^2-6m+10=8m^3-8m^2\)

\(\Leftrightarrow8m^3-12m^2+6m-1=9\)

\(\Leftrightarrow\left(2m-1\right)^3=9\)

\(\Leftrightarrow2m-1=\sqrt[3]{9}\)

\(\Rightarrow m=\dfrac{1+\sqrt[3]{9}}{2}\)

a: Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=4m^2-4m+1+15=(2m-1)^2+15>0

=>Phương trình luôn có 2 nghiệm pb

A=x1^2+x2^2

=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>=31/4

Dấu = xảy ra khi m=3/4

b: x1^2+x2^=8m^3-8m^2

=>4m^2-6m+10=8m^3-8m^2

=>8m^3-8m^2-4m^2+6m-10=0

=>8m^3-12m^2+6m-10=0

=>\(m\simeq1,54\)