giải dùm em câu b ba...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

b: Ta có: \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}-\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}+\sqrt{5}}\)

\(=\left(-\sqrt{7}+\sqrt{5}\right)\cdot\left(\sqrt{7}+\sqrt{5}\right)\)

=5-7

=-2

20 tháng 8 2021

b) \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}-\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}+\sqrt{5}}\)

\(=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{-\left(\sqrt{2}-1\right)}-\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{-\left(\sqrt{3}-1\right)}\right):\dfrac{1}{\sqrt{7}+\sqrt{5}}\)

\(=\left(\sqrt{5}-\sqrt{7}\right).\left(\sqrt{5}+\sqrt{7}\right)\)

\(=5-7\\ =-2\)

7 tháng 7 2017

Lần sau bạn chụp lại ảnh thẳng rồi hẵng đăng lên nhé. Chụp thế có mà nhìn gãy cổ à ?

\(a,\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

\(d,\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}=\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)

\(i,\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}\)

\(=\sqrt{36-12\sqrt{5}+5}-\sqrt{36+12\sqrt{5}+5}\)

\(=\sqrt{\left(6-\sqrt{5}\right)^2}-\sqrt{\left(6+\sqrt{5}\right)^2}\)

\(=6-\sqrt{5}-6-\sqrt{5}\)

\(=-2\sqrt{5}\)

19 tháng 10 2020

Đề: Dẫn 17,92 lít khí hidro đi qua ống sứ m gam , 1 oxit sắt FexOy nung nóng sau phản ứng thu được 2,4*10^23 phân tử nước và hỗn hợp X gồm 2 chất rắng nặng 28.4 g

8 tháng 6 2016

Kẻ BK là đường cao của hình thang => BK = 12 cm
Từ B, kẻ BE//AC => ABEC là hình bình hành và BD vuông góc với BE 
Áp dụng hệ thức lượng trong tam giác BDE vuông ở B :1/BD2 + 1/BE2 = 1/BK2 
=> BE = 20 cm 
Theo định lý Py-ta-go, BD2 +BE2 =DE2 => DE = 25 cm
Lại có DE = DC+CE=DC+AB 
=> SABCD =\(\frac{\left(DC+AB\right).BK}{2}=\frac{25.12}{2}=150\) (cm2)

6 tháng 8 2020

câu 14 nào ? 

9 tháng 8 2017

a) \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(a+b\ge-2\sqrt{ab}\)

\(\left(a=\sqrt{a}\times\sqrt{a}=\sqrt{a}^2;b=\sqrt{b}\times\sqrt{b}=\sqrt{b^2}\right)\)

\(\sqrt{a}^2-2\sqrt{ab}+\sqrt{b}^2\ge0\)

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\left(đpcm\right)\)

( vi bất kì số nào bình phương cũng là số dương mà ^^~ )

15 tháng 10 2017

Làm đại :v

4) \(P=3x+2y+\dfrac{12}{x-2}+\dfrac{8}{y+1}\)

\(P=3\left(x-2\right)+2\left(y+1\right)+\dfrac{12}{x-2}+\dfrac{8}{y+1}+4\)

\(P\ge2\sqrt{3\left(x-2\right).\dfrac{12}{x-2}}+2\sqrt{2\left(y+1\right).\dfrac{8}{y+1}}+4\)

\(P\ge2\sqrt{36}+2\sqrt{16}+4=24\)

Vậy MinP là 4 khi và chỉ khi x=4;y=1