Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử số thứ nhất chia 5 dư 1 thì số thứ năm chia năm dư 5
Hay số thứ năm chia hết cho 5
Tiếp tục giả sử với các trường hợp số thứ hai, ba,... chia năm dư 1
Ta cũng thu được trong 5 số ấy luôn có 1 số chia hết cho 5
Do đó tích của 5 số tự nhiên liên tiếp luôn chia hết cho 5
Vậy tích của 5 số tự nhiên liên tiếp luôn chia hết cho 5
\(\frac{x-12}{3}=\frac{x+1}{4}\)
=>(x-12).4=(x+1)*3
4x-48=3x+3
4x-3x=48+3
x=51
(x-12)/3=(x+1)/4
(x-12)*4=(x+1)*3
x*4-12*4=x*3+1*3
4x-48=3x+3
4x-3x=3+48
x=51
|x - 4| = | -81 |
|x - 4| = 81
\(\Rightarrow\orbr{\begin{cases}x-4=81\\x-4=-81\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=85\\x=-77\end{cases}}\)
Vậy x=85 hoặc x=-77
Ix-4I=I-81I
<=> Ix-4I=81
<=> x-4=9 hoặc x-4=-9
<=> x=13 hoặc x=-5
Vậy x=13; x=-5
\(x+y+xy=40\)
\(x\left(1+y\right)+y=40\)
\(\left(x+1\right)\left(y+1\right)=41\)
Vì 41 là số nguyên tố nên xảy ra các trường hợp:
\(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=1\\y+1=41\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=41\\y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-1\\y+1=-41\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-41\\y+1=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=40\end{matrix}\right.\\\left\{{}\begin{matrix}x=40\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-42\end{matrix}\right.\\\left\{{}\begin{matrix}x=-42\\y=-2\end{matrix}\right.\end{matrix}\right.\)
\(=5+5+...+5\)
Tổng trên có \(\left[\left(57-2\right):5+1\right]:2=6\left(\text{số 5}\right)\)
Vậy tổng là \(6\cdot5=30\)
d: \(3^{200}=9^{100}\)
\(2^{300}=8^{100}\)
mà 9>8
nên \(3^{200}>2^{300}\)
Lời giải:
Gọi số học sinh lớp 12 là $a$
Theo bài ra thì $a-15\vdots 20,25, 30$
$\Rightarrow a-15\vdots \text{BCNN(20,25,30)}$
$\Rightarrow a-15\vdots 300$
$\Rightarrow a-15\in \left\{300; 600; 900; 1200;....\right\}$
$\Rightarrow a\in \left\{315; 615; 915; 1215;...\right\}$
Vì $a\vdots 41$ và $a\leq 1000$ nên $a=615$