Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x là cạnh của tam giác đều ABC
=> đg cao AH = \(\dfrac{x\sqrt{3}}{2}\) = 2a
=> \(x=\dfrac{4a\sqrt{3}}{3}\)
=>r=\(\dfrac{2a\sqrt{3}}{3}\)
Sxq = \(\pi rl\) = \(\pi.\dfrac{2a\sqrt{3}}{3}\).\(\dfrac{4a\sqrt{3}}{3}\) = \(\dfrac{8\pi}{3}\)
Đáp án B.
Hướng dẫn giải:Ta có
Suy ra tam giác SAD vuông cân tại A nên SA = AD =2a .
Trong hình thang ABCD , kẻ B H ⊥ A D ( H ∈ A D ) .
Do ABCD là hình thang cân nên A H = A D - B C 2 = a 2 .
Tam giác AHB ,có B H = A B 2 - A H 2 = a 3 2
Diện tích S A B C D = 1 2 ( A D + B C ) . B H = 3 a 3 2 4 .
Vậy V S . A B C D = 1 3 S A B C D . S A = a 3 3 2
kết quả của em là 116 đúng không ạ đúng đúng không đùng thì đúng