K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2022

3x(2-x)-5=1-(3x2+2)

<=>6x-3x2-5=-3x2-2

<=>6x=3

<=>x=1/2

9 tháng 9 2021

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x-y\right)\left(x+y\right)-4x^2\\ P=\left(x-y-x-y\right)^2-4x^2\\ P=4y^2-4x^2=4\left(y-x\right)\left(x+y\right)\)

21 tháng 3 2019

\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)

\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)

\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)

\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)

\(ĐK:x\ge2016;y\ge2017;z\ge2018\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)

21 tháng 3 2019

nhân đôi 2 vế rồi chuyển vế trái sang vế phải, ta có:

\(\left(\sqrt{x-2016}-1\right)^2\) + \(\left(\sqrt{y-2017}-1\right)^2\)

\(\left(\sqrt{z-2018}-1\right)^2\)

= 0

8 tháng 6 2016

Sorry . I am class 7a

xin lỗi, em lớp 6 vừa mới lên lớp 7 thui
18 tháng 9 2021

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-2=x^2-2x\)

\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)

18 tháng 9 2021

Cho mình sửa lại nhé:

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-2=x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)