K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

đề như thế này à \(\dfrac{\sqrt{27-3\sqrt{2}+2\sqrt{6}}}{3\sqrt{3}}\)

12 tháng 9 2021

và bài này luôn quên không viết 
√(√3 +1)^2 + √(1- √3)^2

   
25 tháng 7 2018

Đặt \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\) ta có:

\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

\(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{4-5}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3A\)

Giải PT:

\(A^3+3A-4=0\Leftrightarrow A^3-1+3A-3=0\)\(\Leftrightarrow\left(A-1\right)\left(A^2+A+1\right)+3\left(A-1\right)=0\)\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}A-1=0\\A^2+A+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}A=1\\A^2+2.\frac{1}{2}A+\frac{1}{4}-\frac{1}{4}+4=0\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}A=1\\\left(A+\frac{1}{2}\right)^2+\frac{15}{4}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}A=1\\\left(A+\frac{1}{2}\right)^2=-\frac{15}{4}\left(L\right)\end{cases}}}\)

Vậy \(A=1\)

5 tháng 8 2021

22,

1, Đặt √(3-√5) = A

=> √2A=√(6-2√5)

=> √2A=√(5-2√5+1)

=> √2A=|√5 -1|

=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)

=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)

2, Đặt √(7+3√5) = B

=> √2B=√(14+6√5)

 => √2B=√(9+2√45+5)

=> √2B=|3+√5|

=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)

=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)

3, 

Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C

=> √2C=√(18+2√17) - √(18-2√17) -\(2\)

=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)

=> √2C=√17+1- √17+1 -\(2\)

=> √2C=0

=> C=0

26,

|3-2x|=2\(\sqrt{5}\)

TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)

3-2x=2\(\sqrt{5}\)

-2x=2\(\sqrt{5}\) -3

x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)

TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)

3-2x=-2\(\sqrt{5}\)

-2x=-2√5 -3

x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)

Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)

 

 

 

 

 

 

6 tháng 8 2021

2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12

3, \(\sqrt{x^2-2x+1}\)=7

⇔ |x-1|=7 

TH1: x-1≥0 ⇔ x≥1

x-1=7 ⇔ x=8 (TMĐK)

TH2: x-1<0 ⇔ x<1

x-1=-7 ⇔ x=-6 (TMĐK)

Vậy x=8, -6

4, \(\sqrt{\left(x-1\right)^2}\)=x+3

⇔ |x-1|=x+3

TH1: x-1≥0 ⇔ x≥1

x-1=x+3 ⇔ 0x=4 (KTM)

TH2: x-1<0 ⇔ x<1

x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)

Vậy x=-1

 

12 tháng 7 2021

\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)

\(=\sqrt{12}+1=2\sqrt{3}+1\)

\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-1\)

\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

2) biến đổi khúc sau như câu 1:

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

 

12 tháng 7 2021

1) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+\sqrt{4.12}}}=\sqrt{5-\sqrt{13+2\sqrt{12}}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}\right)^2+2.\sqrt{12}+1^2}}=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{5-\left|\sqrt{4.3}+1\right|}\)

\(=\sqrt{5-\left(2\sqrt{3}+1\right)}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{3}-1}=2\sqrt{2+\sqrt{3}}\)

\(=2\sqrt{\dfrac{4+2\sqrt{3}}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}\)

\(=2.\dfrac{\left|\sqrt{3}+1\right|}{\sqrt{2}}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)

2) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{3}-1\) (như trên)

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\) 

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

 

 

2:

1+cot^2a=1/sin^2a

=>1/sin^2a=1681/81

=>sin^2a=81/1681

=>sin a=9/41

=>cosa=40/41

tan a=1:40/9=9/40

12 tháng 3 2020

\(\hept{\begin{cases}\left|x-2\right|+2\sqrt{y+3}=9\\x+\sqrt{y+3}=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left|x-2\right|+2\sqrt{y+3}=9\\x-2+\sqrt{y+3}=-3\end{cases}}\)(1)

Đặt \(\hept{\begin{cases}x-2=a\\\sqrt{y+3}=b\left(\ge0\right)\end{cases}}\)

Xét: \(x\ge2\)

=> (1) trở thành \(\Leftrightarrow\hept{\begin{cases}x-2+2\sqrt{y+3}=9\\x-2+\sqrt{y+3}=-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+2b=9\\a+b=-3\end{cases}}\)

Xét \(x< 2\)

=> (1) trở thành \(\Leftrightarrow\hept{\begin{cases}-\left(x-2\right)+2\sqrt{y+3}=9\\x-2+\sqrt{y+3}=-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-a+2b=9\\a+b=-3\end{cases}}\)

 
20 tháng 4 2020

Từ hệ pt trên \(< =>\hept{\begin{cases}|x-2|+2\sqrt{y+3}=9\\x+\sqrt{y+3}=-1\end{cases}}\)

\(< =>\hept{\begin{cases}|x-2|+2\sqrt{y+3}=9\\2x+2\sqrt{y+3}=-2\end{cases}}\)

\(< =>\hept{\begin{cases}|x-2|-2x=11\\x+\sqrt{y+3}=-1\end{cases}}\)

Xét \(x\ge2\)=>  \(|x-2|=\left(x-2\right)\)

\(< =>\hept{\begin{cases}x-2-2x=11\\x+\sqrt{y+3}=-1\end{cases}}\)

\(< =>\hept{\begin{cases}x=-13\\-13+\sqrt{y+3}=-1\end{cases}}\)

\(< =>\hept{\begin{cases}x=-13\\\sqrt{y+3}=12\end{cases}}\)

\(< =>\hept{\begin{cases}x=-13\\\sqrt{y+3}=\sqrt{144}\end{cases}}\)

\(< =>\hept{\begin{cases}x=-13\\y=141\end{cases}}\)

Có ai check cái :( e mới học dạng này nên chưa chắc :(((