Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{1}{\sqrt{3}-2}-\dfrac{1}{\sqrt{3}-3}\)
\(=\dfrac{\sqrt{3}-3}{9-5\sqrt{3}}-\dfrac{\sqrt{3}-2}{9-5\sqrt{3}}\)
\(=\dfrac{-1}{9-5\sqrt{3}}\)
b, \(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\right)\cdot\left(\sqrt{x}-\dfrac{4}{\sqrt{x}}\right)\) (ĐK: x > 0; \(x\ne1\) )
\(=\left(\dfrac{x-3\sqrt{x}+2}{x-4}-\dfrac{x+4\sqrt{x}+4}{x-4}\right)\cdot\left(\dfrac{x}{\sqrt{x}}-\dfrac{4}{\sqrt{x}}\right)\)
\(=\left(\dfrac{x-3\sqrt{x}+2-x-4\sqrt{x}-4}{x-4}\right)\cdot\left(\dfrac{x-4}{\sqrt{x}}\right)\)
\(=\dfrac{-7\sqrt{x}-2}{x-4}\cdot\dfrac{x-4}{\sqrt{x}}\)
\(=\dfrac{-7\sqrt{x}-2}{\sqrt{x}}\)
c, \(\dfrac{1}{\sqrt{x}-1}-\dfrac{3}{x\sqrt{x}-1}+\dfrac{1}{x+\sqrt{x}+1}\) (ĐK: \(x\ge0;x\ne1\) )
\(=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}\right)^3-1^3}-\dfrac{3}{\left(\sqrt{x}\right)^3-1^3}+\dfrac{\sqrt{x}-1}{\left(\sqrt{x}\right)^3-1^3}\)
\(=\dfrac{x+\sqrt{x}+1-3+\sqrt{x}-1}{\left(\sqrt{x}\right)^3-1^3}\)
\(=\dfrac{2\sqrt{x}+x-3}{\left(\sqrt{x}\right)^3-1^3}\)
P/s: vì chữ bạn hơi xấu, mình dịch chưa chắc đúng nên có gì sai bạn thông cảm nhé. ^^
3.7:
a: =>9x=225
=>x=25
b: =>4x^2=64
=>x^2=16
=>x=4 hoặc x=-4
c; =>4(x+1)=8
=>x+1=2
=>x=1
d: =>9(2-3x)^2=36
=>(3x-2)^2=4
=>3x-2=4 hoặc 3x-2=-4
=>x=2 hoặc x=-2/3
e: =>\(\sqrt{x-2}\left(\sqrt{x+2}-2\right)=0\)
=>x-2=0 hoặc x+2=4
=>x=2
Ta có \(\widehat{ACB}=38^0\) (so le trong)
\(AB=25+1,6=26,6\left(m\right)\)
\(\Rightarrow BC=\dfrac{AB}{tan\widehat{ACB}}=\dfrac{26,6}{tan38^0}\approx34\left(m\right)\)
Gọi vận tốc thực là x
Theo đề, ta có: \(\dfrac{54}{x+3}+\dfrac{54}{x-3}=7.5\)
=>\(\dfrac{54x-162+54x+162}{x^2-9}=7.5\)
=>7,5(x^2-9)=108x
=>7,5x^2-108x-67,5=0
=>x=15
1: \(\dfrac{x^2-5}{x-\sqrt{5}}=x+\sqrt{5}\)
2: \(\dfrac{1-b\sqrt{b}}{1-\sqrt{b}}=1+\sqrt{b}+b\)
3: \(\dfrac{1-\sqrt{8}}{1+\sqrt{2}}=-5+3\sqrt{2}\)
f) Ta có: \(F=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right)\left(\sqrt{6}+11\right)\)
\(=\left[3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\cdot\left(11+\sqrt{6}\right)\)
\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(11+\sqrt{6}\right)\)
\(=\left(\sqrt{6}-11\right)\left(11+\sqrt{6}\right)\)
=6-121=-115