Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Nếu $\sqrt{55-6\sqrt{6}}=a+b\sqrt{6}$√55−6√6=a+b√6 với $a,b\in Z$a,b∈Z thì a-b=?
2. Nếu $\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=a+b\sqrt{6}$√15−6√6+√33−12√6=a+b√6 với $a,b\in Z$a,b∈Z thì a+b=?
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\)
\(=\sqrt{3^2-2\cdot3\cdot\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}\right)^2-2\cdot2\sqrt{6}\cdot3+3^2}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
Suy ra: a= 0 và b = 1 => a+b = 1.
\(A=\sqrt{5-2\sqrt{5}+1}-\sqrt{5+2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\sqrt{5}-1-\sqrt{5}-1=-2\)
Vậy \(A\in Z\)
Làm tương tự với B.
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{6-2\times\sqrt{6}\times3+9}+\sqrt{\left(2\sqrt{6}\right)^2-2\times2\sqrt{6}\times3+9}\)
\(=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2=\sqrt{6}-3+2\sqrt{6}-3=3\sqrt{6}-3}\)
Vậy \(a=-3;b=3\) => \(a+b=3-3=0\)
\(\sqrt{14-6\sqrt{5}}=\left(3-\sqrt{5}\right)^{ }\)
suy ra a=3 ; b=-1
suy ra a+b=3+(-1)=2
\(\sqrt{16-2\sqrt{55}}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}=\sqrt{11}-\sqrt{5}\)
suy ra a=11;b=5
suy ra a+b=11+5=16
bài 2 nhé, bài 1 không biết làm.
cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))
+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương
- nhắm đến hằng đẳng thức số 1 và số 2.
+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối
* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)
=> ta sẽ phân tích số hạng chứa căn để tìm A và B
+ nhẩm bằng máy tính, tìm 2 số hạng:
thử lần lượt các trường hợp, lấy vd là câu c)
\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)
\(\Rightarrow AB=6\sqrt{5}\)
- đầu tiên xét đơn giản với B là căn 5 => A= 6
\(A^2+B^2=36+5=41\) (41 khác 29 => loại)
- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)
tương ứng A= 2; B = 3 căn 5
\(A^2+B^2=4+45=49\) (loại)
- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)
Tương ứng A= 3 ; B= 2 căn 5
\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)
Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)
+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:
\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)
sau đó bạn làm tương tự như 2 câu mẫu bên dưới
* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối
a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)
1/ Ta có √(14 - 6√5) = √(9 - 6√5 +5) = 3 - √5
Từ đó a + b = 2
2/ Đề sai sửa lại là
√(15 - 6√6) = √(9 - 6√6 + 6) = (3 - √6)
Vậy a = 3; b = -1
=> a + b = 2