Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
⇔ (3x – 1)(x2 + 2) – (3x – 1)(7x – 10) = 0
⇔ (3x – 1)(x2 + 2 – 7x + 10) = 0
⇔ (3x – 1)(x2 – 7x + 12) = 0
⇔ (3x – 1)(x2 – 4x – 3x + 12) = 0
⇔ (3x – 1)[(x2 – 4x) – (3x - 12)] = 0
⇔ (3x – 1)[x(x – 4) – 3(x – 4)] = 0
⇔ (3x – 1)(x – 3)(x – 4) = 0
⇔ 3x – 1 = 0 hoặc x – 3 = 0 hoặc x – 4 = 0
+ 3x – 1 = 0 ⇔ 3x = 1 ⇔ x = 1/3.
+ x – 3 = 0 ⇔ x = 3.
+ x – 4 = 0 ⇔ x = 4.
Vậy phương trình có tập nghiệm là
\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1\right)=\left(3x-2\right)\left(3x+2\right)\left(x+1\right)\)
\(\Leftrightarrow x-1=3x-2\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
c: =>x-3=0
hay x=3
d: \(\Leftrightarrow\left(3x-1\right)\cdot\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)
\(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right).\)
\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0.\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0.\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(-2x+1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0.\\x+1=0.\\-2x+1=0.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}.\\x=-1.\\x=\dfrac{1}{2}.\end{matrix}\right.\)
c: =>(x-3)(x2+3x+5)=0
=>x-3=0
hay x=3
d: =>(3x-1)(x2+2-7x+10)=0
=>(3x-1)(x-3)(x-4)=0
hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)
Bài 1)1)\(x^2+5x+6=x^2+3x+2x+6\)=0
=x(x+3)+2(x+3)=(x+2)(x+3)=0
Dễ rồi
2)\(x^2-x-6=0=x^2-3x+2x-6=0\)
=x(x-3)+2(x-3)=0
=(x+2)(x-3)=0
Dễ rồi
3)Phương trình tương đương:\(\left(x^2+1\right)\left(x+2\right)^2=0\)
Vì \(x^2+1>0\)
=>\(\left(x+2\right)^2=0\)
Dễ rồi
4)Phương trình tương đương\(x^2\left(x+1\right)+\left(x+1\right)\)=0
=> \(\left(x^2+1\right)\left(x+1\right)=0Vì\) \(x^2+1>0\)
=>x+1=0
=>..................
5)\(x^2-7x+6=x^2-6x-x+6\) =0
=x(x-6)-(x-6)=0
=(x-1)(x-6)=0
=>.....
6)\(2x^2-3x-5=2x^2+2x-5x-5\)=0
=2x(x+1)-5(x+1)=0
=(2x-5)(x+1)=0
7)\(x^2-3x+4x-12\)=x(x-3)+4(x-3)=(x+4)(x-3)=0
Dễ rồi
Nghỉ đã hôm sau làm mệt
( 3x-1) ( x2+ 9) = (3x-1) (7x-10)
⇒( 3x-1) ( x2+ 9) - (3x-1) (7x-10) = 0
⇒( 3x-1) (( x2+ 9)-(7x-10)) = 0
⇒( 3x-1)(x2+9-7x+10)=0
⇒( 3x-1)(x2-7x+19)=0
⇒\(\left[{}\begin{matrix}3x-1=0\\x^2-7x+19=0\end{matrix}\right.\)
3x-1=0
⇒x=\(\dfrac{1}{3}\)
x2-7x+19=0
⇒ \(x^2-\dfrac{7}{2}x-\dfrac{7}{2}x+\left(\dfrac{7}{2}\right)^2+\dfrac{27}{4}=0\)
⇒ \(\left(x-\dfrac{7}{2}\right)^2+\dfrac{27}{4}=0\)
vì \(\left(x-\dfrac{7}{2}\right)^2\ge0\); \(\dfrac{27}{4}>0\)
⇒ \(\left(x-\dfrac{7}{2}\right)^2+\dfrac{27}{4}>0\)
⇒ x vô nghiệm
Vậy x= \(\dfrac{1}{3}\)
\(\left(3x-1\right)\left(x^2+9\right)=\left(3x-1\right)\left(7x-10\right)\\ \Leftrightarrow\left(3x-1\right)\left(x^2+9\right)-\left(3x-1\right)\left(7x-10\right)\\ \Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \Leftrightarrow\left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
a: (3x-2)(4x+5)=0
=>3x-2=0 hoặc 4x+5=0
=>x=2/3 hoặc x=-5/4
b: (2,3x-6,9)(0,1x+2)=0
=>2,3x-6,9=0 hoặc 0,1x+2=0
=>x=3 hoặc x=-20
c: =>(x-3)(2x+5)=0
=>x-3=0 hoặc 2x+5=0
=>x=3 hoặc x=-5/2
a) \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy .................
b) \(\left(x-3\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+3\right)\left(2x+1+x-3\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ...............
c) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
P/s: tới đây bn tự giải tiếp nha
`(3x-1)(x^2 +2)=(3x-1)(7x-10)`
`<=> (3x-1)(x^2 +2)-(3x-1)(7x-10)=0`
`<=> (3x-1)(x^2 +2-7x+10)=0`
`<=> (3x-1)(x^2 -7x+12)=0`
`<=> (3x-1)(x^2 -3x-4x+12)=0`
`<=> (3x-1)[x(x-3)-4(x-3)]=0`
`<=> (3x-1)(x-4)(x-3)=0`
\(< =>\left[{}\begin{matrix}3x-1=0\\x-4=0\\x-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\\x=3\end{matrix}\right.\)
\(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-3x-4x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left[\left(x^2-3x\right)-\left(4x-12\right)\right]=0\)
\(\Leftrightarrow\left(3x-1\right)\left[x\left(x-3\right)-4\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(3x-1\right)\left[\left(x-3\right)\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{\dfrac{1}{3};3;4\right\}\)