K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

b, \(2x+4x^2=5-5+4-2^2\)

\(\Leftrightarrow2x\left(1+2x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\1+2x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)

Vậy...

19 tháng 6 2019

\(2x+4x^2=5-5+4-2^2\)

\(\Leftrightarrow2x+4x^2=0\)

\(\Leftrightarrow4x^2+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)

Vậy:...

27 tháng 3 2020
https://i.imgur.com/cGrmxY5.jpg
21 tháng 8 2020

a/\(\left(4x-1\right)\left(x+5\right)=x^2-25\Leftrightarrow4x^2+20x-x-5=x^2-25\Leftrightarrow3x^2+19x+20\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-4}{3}\\-5\end{matrix}\right.\)

b/

\(2x^3-6x^2=x^2-3x\Leftrightarrow2x^3-6x^2-x^2+3x=0\Leftrightarrow2x^2\left(x-3\right)-x\left(x-3\right)=0\Leftrightarrow\left(2x^2-x\right)\left(x-3\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}\\3\\0\end{matrix}\right.\)

c/\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2x-\frac{x}{4}\right]=0\Leftrightarrow\left(x+3\right)\left[\left(x^2+6x+9\right)x-\frac{x}{4}\right]=0\Leftrightarrow\left(x+3\right)\left(x^3+6x^2+9x-\frac{x}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^3+6x^2+\frac{35}{4}x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{2}\\x=-\frac{7}{2}\end{matrix}\right.\)

d/\(\left(x-1\right)^2=\left(2x+5\right)^2\Leftrightarrow\left(x-1\right)^2-\left(2x+5\right)^2=0\Leftrightarrow\left(x-1+2x+5\right)\left(x-1-2x-5\right)=0\Leftrightarrow\left(3x+4\right)\left(-x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}3x+4=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{-4}{3}\\0\\-6\end{matrix}\right.\)

3 tháng 5 2017

a. (3x-4)2=9(x-1)(x+1)

<=> 9x2-24x+16=9x2-9

<=> -24x=-25

<=> x=\(\dfrac{25}{24}\)

Vậy S=\(\left\{\dfrac{25}{24}\right\}\)

b. (4x-5)2-4(x-2)2=0

<=> (4x-5)2-(2x-4)2=0

<=> (4x-5-2x+4)(4x-5+2x-4)=0

<=> (2x-1)(6x-9)=0

<=> \(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy S=\(\left\{\dfrac{1}{2};\dfrac{3}{2}\right\}\)

3 tháng 5 2017

c. |x2-x|= -2x

Ta có: |x2-x|=x2-x khi x2-x\(\ge0\) hay x\(\ge1\)

=> x2-x= -2x

<=> x2-x+2x=0

<=> x2+x=0

<=> x(x+1)=0

<=> \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (không thỏa mãn điều kiện x\(\ge1\))

Lại có: |x2-x|= x-x2 khi x2-x<0 hay x<1

=> x-x2= -2x

<=> x-x2+2x=0

<=> 3x-x2=0

<=> x(3-x)=0

x=0 (thỏa mãn điều kiện x<1)

hoặc: 3-x=0<=> x=3 (không thỏa mãn điều kiện x<1)

Vậy S=\(\left\{0\right\}\)

d. \(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)

ĐKXĐ: \(x\ne\pm3\)

Ta có:\(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)

<=> \(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48x^3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

=> x2+6x+9-48x3=x2-6x+9

<=> 12x-48x3=0

<=> 12x(1-4x2)=0

<=> 12x(1-2x)(1+2x)=0

<=> \(\left[{}\begin{matrix}x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\) (thỏa mãn ĐKXĐ)

Vậy S=\(\left\{0;\pm0,5\right\}\)

4 tháng 5 2017

a ) ( 3x - 4 )2 = 9 (x-1)(x+1)

\(\Leftrightarrow\) 9x2 - 24x + 16 = 9 ( x2 - 1 )

\(\Leftrightarrow\) 9x2 - 24x + 16 = 9x2 - 9

\(\Leftrightarrow\) 9x2 - 24x - 9x2 = - 9 - 16

\(\Leftrightarrow\) -24x = -24

\(\Leftrightarrow\) x = 1

Vậy phương trình có nghiệm x = 1 .

11 tháng 2 2019

a, \(x^4-2x^3+4x^2-3x+2=x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2\)

\(=x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+2\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(x^2-x+2\right)\)

\(=\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\left(x^2-x+\frac{1}{4}+\frac{7}{4}\right)=\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\left[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\right]>0\) (dpdcm)

b, \(x^6+x^5+x^4+x^2+x+1=x^4\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^4+1\right)=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left(x^4+1\right)>0\) (đpcm)

11 tháng 2 2019

ô ai cho bạn ấy sai zậy

3 tháng 8 2020

\(5X\left(X-2020\right)+X=2020\)

\(\Leftrightarrow5X^2-10100X+X=2020\)

\(\Leftrightarrow5X^2-10099X=2020\)

\(\Leftrightarrow5X^2-10099X-2020=0\)

\(\Leftrightarrow5X^2-10100X+x-2020=0\)

\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)

\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)

3 tháng 8 2020

\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)

\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)

\(\Leftrightarrow-11\left(4x-9\right)=0\)

\(\Leftrightarrow x=\frac{9}{4}\)

12 tháng 7 2015

\(1;x^2+7x+10=0\Rightarrow x^2+2x+5x+10=0\Rightarrow x\left(x+2\right)+5\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+5\right)=0\)

=> x + 2 = 0 hoặc x + 5 = 0

=> x = -2 hoặc x = - 5

2, x^4 - 5x^2 +  4 = 0 

x^4  - 4x^2  - x^2 + 4 = 0 

x^2 ( x^2 - 4) - ( x^2 - 4) = 0 

( x^2 - 1)( x^2 - 4) = 0 

( x - 1 )( x + 1)( x - 2)( x + 2) = 0

=> x= 1 hoặc x= -1 hoặc x = 2 hoặc x = - 2

Đúng cho mi8nhf mình giải tiếp cho

12 tháng 7 2017

1. Với \(x^2-2\ge0\Rightarrow\orbr{\begin{cases}x\ge\sqrt{2}\\x\le-\sqrt{2}\end{cases}}\)

Pt\(\Leftrightarrow x^4-4x^2+5x^2-10+8=0\Rightarrow x^4+x^2-2=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+1\right)=0\Rightarrow x^2=2\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}\left(tm\right)}\)

Với \(x^2-2< 0\Rightarrow-\sqrt{2}< x< \sqrt{2}\)

Pt \(\Leftrightarrow x^4-4x^2+10-5x^2+8=0\Leftrightarrow x^4-9x^2+18=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-6=0\\x^2-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=6\\x^2=3\end{cases}\left(l\right)}\)vì \(x\notin\left(-\sqrt{2};\sqrt{2}\right)\)

2. \(2x^4-20x+18=0\Rightarrow x^4-10x+9=0\)

\(\Rightarrow\left(x^4-x^3\right)+\left(x^3-x^2\right)+\left(x^2-x\right)-\left(9x-9\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^3+x^2+x-9\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x^3+x^2+x-9=0\end{cases}}\)

\(\Rightarrow x=1\)

a) Ta có: \(\left(2x+3\right)^2-\left(5+x\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(2x+3+5+x\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(3x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-3\\3x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{2}\\x=\frac{-8}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-3}{2};\frac{-8}{3}\right\}\)

b) Ta có: \(\left(2x+5\right)^2-\left(2x-5\right)^2=6x+8\)

\(\Leftrightarrow\left(2x+5+2x-5\right)\left(2x+5-2x+5\right)-6x-8=0\)

\(\Leftrightarrow40x-6x-8=0\)

\(\Leftrightarrow34x=8\)

\(\Leftrightarrow x=\frac{8}{34}=\frac{4}{17}\)

Vậy: \(x=\frac{4}{17}\)

c) Ta có: \(\left(4x+3\right)^2=4\left(x-1\right)^2\)

\(\Leftrightarrow16x^2+24x+9=4\left(x^2-2x+1\right)\)

\(\Leftrightarrow16x^2+24x+9-4x^2+8x-4=0\)

\(\Leftrightarrow12x^2+32x+5=0\)

\(\Leftrightarrow12x^2+2x+30x+5=0\)

\(\Leftrightarrow2x\left(6x+1\right)+5\left(6x+1\right)=0\)

\(\Leftrightarrow\left(6x+1\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}6x+1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=-1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)

d) Ta có: \(\left(7x-1\right)\left(3x-2\right)-49x^2+14x=1\)

\(\Leftrightarrow\left(7x-1\right)\left(3x-2\right)-\left(49x^2-14x+1\right)=0\)

\(\Leftrightarrow\left(7x-1\right)\left(3x-2\right)-\left(7x-1\right)^2=0\)

\(\Leftrightarrow\left(7x-1\right)\left[3x-2-\left(7x-1\right)\right]=0\)

\(\Leftrightarrow\left(7x-1\right)\left(3x-2-7x+1\right)=0\)

\(\Leftrightarrow\left(7x-1\right)\left(-4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-1=0\\-4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=1\\-4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{7}\\x=\frac{-1}{4}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{7};\frac{-1}{4}\right\}\)