K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

b)\(y^2=x+\sqrt{x+....+\sqrt{x}}\)

\(\Rightarrow y^2=x+y\Rightarrow y^2-x-y=0\)

Tới đây theo kinh nghiệm 10 năm học toán thì t có thể đoán được 

\(x=-\frac{1}{4};y=\frac{1}{2}\) là nghiệm *đã được chứng minh...*

HÌnh như sai dung ạ :v 

17 tháng 8 2020

a) \(\sqrt{27x^2}=\sqrt{3.\left(3x\right)^2}=\left|3x\right|.\sqrt{3}=3x\sqrt{3}\left(x>0\right)\)

b) \(\sqrt{8xy^2}=\left|y\right|.2\sqrt{2x}=-2y\sqrt{2x}\left(x\ge0,y\le0\right)\)

1) \(x\sqrt{13}=\sqrt{13x^2}\left(x\ge0\right)\)

2) \(x\sqrt{-15x}=-\left|x\right|\sqrt{15x}=-\sqrt{15x^3}\left(x< 0\right)\)

3) \(x\sqrt{2}=-\left|x\right|\sqrt{2}=-\sqrt{2x^2}\left(x\le0\right)\)

19 tháng 7 2018

câu a nè:

http://123link.pw/0Qyw5v

19 tháng 7 2018

câu d nè : http://123link.pw/Jx46C

nhớ cho đúng nha ^-^

NV
2 tháng 4 2019

Câu 1:

\(\left\{{}\begin{matrix}\frac{x-1}{x+3}\ge0\\x+3\ne0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x< -3\end{matrix}\right.\)

b/

\(\left\{{}\begin{matrix}\frac{x-1}{4-x}\ge0\\4-x\ne0\end{matrix}\right.\) \(\Rightarrow1\le x< 4\)

c/

\(\left\{{}\begin{matrix}\frac{a^3}{b^2}\ge0\\b^2\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3\ge0\\b\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a\ge0\\b\ne0\end{matrix}\right.\)

Câu 2:

\(\sqrt{64+6\sqrt{7}}=\sqrt{63+2\sqrt{63}+1}=\sqrt{\left(\sqrt{63}+1\right)^2}=1+\sqrt{63}=1+3\sqrt{7}\)

\(\sqrt{16+8\sqrt{3}}=\sqrt{12+2\sqrt{12.4}+4}=\sqrt{\left(\sqrt{12}+\sqrt{4}\right)^2}=\sqrt{12}+\sqrt{4}=2+2\sqrt{3}\)

\(\sqrt{9-2\sqrt{14}}=\sqrt{7-2\sqrt{7.2}+2}=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}=\sqrt{7}-\sqrt{2}\)

2 tháng 1 2018

Ta có :

\(a^2=72+\sqrt{72+\sqrt{72+\sqrt{72+.......}}}\)

\(\Leftrightarrow a^2=72+a\Leftrightarrow a^2-a-72=0\Leftrightarrow\left(a-9\right)\left(a+8\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a=9\\a=-8\end{cases}}\)

Mà a > 0 nên a = 9 \(\Rightarrow\left[a\right]=9\)