\(\left(x-1\right)\sqrt{x+1}+\sqrt{2x+1}=\sqrt{x+2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

a)\(\left(x-1\right)\sqrt{x+1}+\sqrt{2x+1}=\sqrt{x+2}\)

ĐK:\(x\ge-\frac{1}{2}\)

\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\sqrt{2x+1}-\sqrt{3}=\sqrt{x+2}-\sqrt{3}\)

\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2x+1-3}{\sqrt{2x+1}+\sqrt{3}}=\frac{x+2-3}{\sqrt{x+2}+\sqrt{3}}\)

\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2x-2}{\sqrt{2x+1}+\sqrt{3}}=\frac{x-1}{\sqrt{x+2}+\sqrt{3}}\)

\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2\left(x-1\right)}{\sqrt{2x+1}+\sqrt{3}}-\frac{x-1}{\sqrt{x+2}+\sqrt{3}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\sqrt{x+1}+\frac{2}{\sqrt{2x+1}+\sqrt{3}}-\frac{1}{\sqrt{x+2}+\sqrt{3}}\right)=0\)

Suy ra x=1

b)\(\frac{1}{\left(x-1\right)^2}+\sqrt{3x+1}=\frac{1}{x^2}+\sqrt{x+2}\)

\(\Leftrightarrow\frac{1}{\left(x-1\right)^2}-4+\sqrt{3x+1}-\sqrt{\frac{5}{2}}=\frac{1}{x^2}-4+\sqrt{x+2}-\sqrt{\frac{5}{2}}\)

\(\Leftrightarrow\frac{4x^2-8x+3}{-x^2+2x-1}+\frac{3x+1-\frac{5}{2}}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}=\frac{-\left(4x^2-1\right)}{x^2}+\frac{x+2-\frac{5}{2}}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}\)

\(\Leftrightarrow\frac{2\left(x-\frac{1}{2}\right)\left(2x-3\right)}{-x^2+2x-1}+\frac{6\left(x-\frac{1}{2}\right)}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}+\frac{2\left(x-\frac{1}{2}\right)\left(2x+1\right)}{x^2}-\frac{x-\frac{1}{2}}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)\left(\frac{2\left(2x-3\right)}{-x^2+2x-1}+\frac{6}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}+\frac{2\left(2x+1\right)}{x^2}-\frac{1}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}\right)=0\)

Suy ra x=1/2

20 tháng 8 2017

96 đặt\(\sqrt{x+7}+\sqrt{6-x}=a\)

=>\(a^2-13=2\sqrt{-x^2-x+42}\)

xong cậu thay vào pt là đc

12 tháng 8 2017

câu 2 đề sai

12 tháng 8 2017

ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !

câu 1 ) thì đúng

câu 2 sai đề

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

16 tháng 8 2017

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

ĐK:\(x\ge-3\)

\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)

\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)

\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)

16 tháng 8 2017

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

ĐK:\(x\ge-3\)

\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)

\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)

\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)

đặt \(\sqrt{2x-x^2}=a\)

phương trình trở thành:

\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)

đến đây thì khai triển đi

22 tháng 8 2017

1/ Đặt  \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{a}{b}-1=0\\a^2-b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab=a+b\\\left(a+b\right)\left(a-b\right)=1\end{cases}}\)

Tới đây b làm nốt nhé

14 tháng 7 2017

\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)

\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)

Chắc tới đây bạn làm đc rồi nhỉ