K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2022

\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1\right)=\left(3x-2\right)\left(3x+2\right)\left(x+1\right)\)

\(\Leftrightarrow x-1=3x-2\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

c: =>x-3=0

hay x=3

d: \(\Leftrightarrow\left(3x-1\right)\cdot\left(x^2+2-7x+10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)

11 tháng 1 2022

 \(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right).\)

\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0.\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0.\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(-2x+1\right)=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0.\\x+1=0.\\-2x+1=0.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}.\\x=-1.\\x=\dfrac{1}{2}.\end{matrix}\right.\)

c: =>(x-3)(x2+3x+5)=0

=>x-3=0

hay x=3

d: =>(3x-1)(x2+2-7x+10)=0

=>(3x-1)(x-3)(x-4)=0

hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)

18 tháng 2 2022

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

16 tháng 1 2021

\(a,\left(2x-3\right)^2=\left(x+1\right)^2\\ \Leftrightarrow\left(2x-3\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-3+x+1\right)\left(2x-3-x-1\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x-4\right)\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\x=4\end{matrix}\right. \\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{2}{3};4\right\}\)

 

16 tháng 1 2021

\(b,x^2-6x+9=9\left(x-1\right)^2\\ \Leftrightarrow\left(x-3\right)^2=9\left(x-1\right)^2\\ \Leftrightarrow\left(x-3\right)^2-9\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-3\right)^2-3^2\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-3\right)^2-\left[3\left(x-1\right)\right]^2=0\\ \Leftrightarrow\left(x-3\right)^2-\left(3x-3\right)^2=0\\ \Leftrightarrow\left(x-3+3x-3\right)\left(x-3-3x+3\right)=0\\ \Leftrightarrow-2x\left(4x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-2x=0\\4x-6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\4x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{0;\dfrac{3}{2}\right\}\)

 

b: 4(x+1)^2-9(x-1)^2=0

=>(2x+2)^2-(3x-3)^2=0

=>(2x+2-3x+3)(2x+2+3x-3)=0

=>(-x+5)(5x-1)=0

=>x=1/5 hoặc x=5

c: (x-1)^3+x^3+(x+1)^3=(x+2)^3

=>x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8

=>3x^3+6x-x^3-6x^2-12x-8=0

=>2x^3-6x^2-6x-8=0

=>x^3-3x^2-3x-4=0

=>x^3-4x^2+x^2-4x+x-4=0

=>(x-4)(x^2+x+1)=0

=>x-4=0

=>x=4

5 tháng 9 2021

a) \(x^2-4x+4=25\\ \Rightarrow\left(x-2\right)^2=25\\ \Rightarrow\left[{}\begin{matrix}x-2=-5\\x-2=5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

b) \(\left(5-2x\right)^2-16=0\\ \Rightarrow\left(5-2x\right)^2=16\\ \Rightarrow\left[{}\begin{matrix}5-2x=-4\\5-2x=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4,5\\0,5\end{matrix}\right.\)

c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\\ \Rightarrow\left(x-3\right)^3-\left(x-3\right)^3+9\left(x+1\right)^2=15\\ \Rightarrow9\left(x+1\right)^2=15\\ \Rightarrow\left(x+1\right)^2=\dfrac{5}{3}\\ \Rightarrow\left[{}\begin{matrix}x+1=-\sqrt{\dfrac{5}{3}}\\x+1=\sqrt{\dfrac{5}{3}}\end{matrix}\right.\)

   \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3+\sqrt{15}}{3}\\x=\dfrac{-3+\sqrt{15}}{3}\end{matrix}\right.\)

5 tháng 9 2021

a)\(\Leftrightarrow\)\(x^2-4x-21=0\)

\(\Leftrightarrow\)\(x^2-7x+3x-21=0\)

\(\Leftrightarrow\)\(x(x-7)+3(x-7)=0\)

\(\Leftrightarrow\)\((x-7)(x+3)=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=7\\ x=-3 \end{array} \right.\)

b)\(\Leftrightarrow\)\((5-2x)^2-4^2=0\)

\(\Leftrightarrow\)\((5-2x-4)(5-2x+4)=0\)

\(\Leftrightarrow\)\((-2x+1)(-2x+9)=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=\dfrac{1}{2}\\ x=\dfrac{9}{2} \end{array} \right.\)

9 tháng 1 2023

a. 3(x-2)-10=5(2x + 1)

<=> 3x - 6 - 10 = 10x + 5

<=> 3x - 10x = 5 + 6 + 10

<=> -7x = 21

<=> x = -3

b. 3x + 2=8 -2(x-7)

<=> 3x + 2 = 8 - 2x + 14

<=> 3x + 2x = 8 + 14 - 2

<=> 5x = 20

<=> x = 4

c. 2x-(2+5x)= 4(x + 3)

<=> 2x - 2 - 5x = 4x + 12

<=> 2x - 5x - 4x = 12 + 2

<=> -7x = 14

<=> x = -2

d. 5-(x +8)=3x + 3(x-9)

<=> 5 - x - 8 = 3x + 3x - 27

<=> -x - 3x - 3x = -27 + 8 - 5

<=> -7x = -24

<=> x = 24/7

e. 3x - 18 + x= 12-(5x + 3)

<=> 3x - 18 + x = 12 - 5x - 3

<=> 3x + x - 5x = 12 - 3 + 18

<=> -x = 27

<=> x = - 27

a. 3(x-2)-10=5(2x + 1)

<=> 3x - 6 - 10 = 10x + 5

<=> 3x - 10x = 5 + 6 + 10

<=> -7x = 21

<=> x = -3

b. 3x + 2=8 -2(x-7)

<=> 3x + 2 = 8 - 2x + 14

<=> 3x + 2x = 8 + 14 - 2

<=> 5x = 20

<=> x = 4

c. 2x-(2+5x)= 4(x + 3)

<=> 2x - 2 - 5x = 4x + 12

<=> 2x - 5x - 4x = 12 + 2

<=> -7x = 14

<=> x = -2

d. 5-(x +8)=3x + 3(x-9)

<=> 5 - x - 8 = 3x + 3x - 27

<=> -x - 3x - 3x = -27 + 8 - 5

<=> -7x = -24

<=> x = 24/7

e. 3x - 18 + x= 12-(5x + 3)

<=> 3x - 18 + x = 12 - 5x - 3

<=> 3x + x - 5x = 12 - 3 + 18

<=> -x = 27

<=> x = - 27

2 tháng 3 2021

1) `x^2+4-2(x-1)=(x-2)^2`

`<=>x^2+4-2x+2=x^2-4x+4`

`<=>-2x+2=-4x`

`<=>2x=-2`

`<=>x=-1`

.

2) ĐKXĐ: `x \ne \pm 3`

`(x+3)/(x-3)-(x-1)/(x+3)=(x^2+4x+6)/(x^2-9)`

`<=>(x+3)^2-(x-1)(x-3)=x^2+4x+6`

`<=>x^2+6x+9-x^2+4x-3=x^2+4x+6`

`<=>10x+6=x^2+4x+6`

`<=>x^2-6x=0`

`<=>x(x-6)=0`

`<=>x=0;x=6`

.

3) ĐKXĐ: `x \ne \pm 3`

`(3x-3)/(x^2-9) -1/(x-3 )= (x+1)/(x+3)`

`<=>(3x-3)-(x+3)=(x+1)(x-3)`

`<=> 2x-6=x^2-2x-3`

`<=>x^2-4x+3=0`

`<=>x^2-x-3x+3=0`

`<=>x(x-1)-3(x-1)=0`

`<=>(x-3)(x-1)=0`

`<=> x=3;x=1`

Vậy...

18 tháng 1 2022

a) (3x + 2)2 - (3x - 2)2 = 5x + 38

<=> 6x.4 = 5x + 38 <=> 19x = 38 <=> x = 2

b) 3(x - 2)2 + 9(x - 1) = 3(x2 + x - 3)

<=> 3x2 - 12x + 12 + 9x - 9 = 3x2 + 3x - 9

<=> -6x = -12 <=> x = 2

c) (x + 3)2 - (x - 3)2 = 6x + 8

<=> 2x.6 = 6x + 8 <=> 6x = 8 <=> x = 4/3

d) (x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)

<=> x3 - 3x2 + 3x - 1 - x3 - 2x2 - x = 10x - 5x2 - 11x - 22

<=> 3x = -21 <=> x = -7

e) (x + 1)(x2 - x + 1) - 2x = x(x - 1)(x + 1)

<=> x3 - 1 - 2x = x3 - x

<=> x = -1