K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

a: \(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=1\end{matrix}\right.\Leftrightarrow x=\dfrac{3}{2}\)

18 tháng 12 2021

\(a,ĐK:x\ge\dfrac{3}{2}\\ PT\Leftrightarrow\sqrt{2x-3}\left(\sqrt{2x+3}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=0\\\sqrt{2x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{3}{2}\)

\(b,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=0\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=1\)

28 tháng 6 2021

a)ĐK:\(\begin{cases}25x^2-9 \ge 0\\5x+3 \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}(5x-3)(5x+3) \ge 0\\5x+3 \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge \dfrac35\\x \le -\dfrac35\end{array} \right.\\\end{cases}\)

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x \ge \dfrac35\end{array} \right.\)

`pt<=>\sqrt{5x+3}(\sqrt{5x-3}-2)=0`

`<=>` \(\left[ \begin{array}{l}5x+3=0\\\sqrt{5x-3}=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\5x-3=4\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x=7/5\end{array} \right.\) 

`b)sqrt{x-3}/sqrt{2x+1}=2`

ĐK:\(\begin{cases}x-3 \ge 0\\2x+1>0\\\end{cases}\)

`<=>x>=3`

`pt<=>sqrt{x-3}=2sqrt{2x+1}`

`<=>x-3=8x+4`

`<=>7x=7`

`<=>x=1(l)`

`c)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=3`

`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=3`

`<=>|x-1|+|x-2|=3`

`**x>=2`

`pt<=>x-1+x-2=3`

`<=>2x=6`

`<=>x=3(tm)`

`**x<=1`

`pt<=>1-x+2-x=3`

`<=>3-x=3`

`<=>x=0(tm)`

`**1<=x<=2`

`pt<=>x-1+2-x=3`

`<=>=-1=3` vô lý

Vậy `S={0,3}`

20 tháng 4 2022

a, \(\dfrac{1}{2}\sqrt{x-5}-\sqrt{4x-20+3}=0\left(dkxd:x\ge5\right)\)

\(< =>\dfrac{\sqrt{x-5}}{2}=\sqrt{4x-17}\)

\(< =>\dfrac{x-5}{4}=4x-17\)

\(< =>x-5=16x-68\)

\(< =>15x=68-5=63\)

\(< =>x=\dfrac{63}{15}=\dfrac{21}{5}\)(ktm)

b, \(\sqrt{2x+1}-2\sqrt{x}+1=0\left(dkxd:x\ge0\right)\)

\(< =>\sqrt{2x+1}+1=2\sqrt{x}\)

\(< =>2x+1+1+2\sqrt{2x+1}=4x\)

\(< =>2x-2\sqrt{2x+1}-2=0\)

\(< =>2x+1-2\sqrt{2x+1}+1-4=0\)

\(< =>\left(\sqrt{2x+1}-1\right)^2=4\)

\(< =>\left\{{}\begin{matrix}\sqrt{2x+1}-1=2\\\sqrt{2x+1}-1=-2\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}\sqrt{2x+1}=3\\\sqrt{2x+1}=-1\left(loai\right)\end{matrix}\right.\)

\(< =>2x+1=9< =>2x=8< =>x=4\)(tmdk)

AH
Akai Haruma
Giáo viên
22 tháng 6 2021

Lời giải:

a. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$

$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$

$\Leftrightarrow |\sqrt{x-4}+2|=2$

$\Leftrightarrow  \sqrt{x-4}+2=2$

$\Leftrightarrow \sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

b. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

c.

PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)

c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=4\)

hay x=5

e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)

\(\Leftrightarrow\left|2x-7\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

a. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$

$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$

$\Leftrightarrow x\leq 2$

b. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 1=2\sqrt{x-2}$

$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$

$\Leftrightarrow \frac{1}{4}=x-2$

$\Leftrightarrow x=\frac{9}{4}$ (tm)

6 tháng 10 2023

a)√x2−9 - 3√x−3 =0

<=> (√x-3)(√x+3)-3√x-3=0

<=> (√x-3)(√x+3-3)=0

<=> (√x-3)√x=0

<=> √x-3=0

<=>x=9

b)√4x2−12x+9=x - 3

<=> √(2x -3)=x-3

<=> 2x-3=x-3

<=>2x-x=-3+3

<=>x=0

c)√x2+6x+9=3x-1

<=> √(x+3)=3x-1

<=> x+3=3x-1

<=> -2x=-4

<=>  x=2

Nhớ cho mình 1 tim nha bạn

HQ
Hà Quang Minh
Giáo viên
7 tháng 10 2023

Sau em nên gõ các kí hiệu toán học ở phần Σ để mọi người dễ dàng đọc hơn nhé.

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

3 tháng 1 2021

1.

\(\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}\)

2. 

a, ĐK: \(x\in R\)

\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\)

\(\Leftrightarrow\left|x-2\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

b, ĐK: \(x\ge3\)

\(pt\Leftrightarrow\sqrt{x-3}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\end{matrix}\right.\)

13 tháng 9 2021

\(a,\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\\ \Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x+3=1\end{matrix}\right.\Leftrightarrow x=-1\left(N\right)\)

13 tháng 9 2021

\(b,\Leftrightarrow3x^2+3x-2\sqrt{x^2+x}=0\left(x\le-1;x\ge0\right)\\ \Leftrightarrow3x\left(x-1\right)-2\sqrt{x\left(x+1\right)}=0\\ \Leftrightarrow\sqrt{x\left(x+1\right)}\left(3\sqrt{x\left(x-1\right)}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x\left(x-1\right)=0\\\sqrt{x\left(x-1\right)}=\dfrac{2}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x^2-x-\dfrac{4}{9}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\9x^2-9x-4=0\left(1\right)\end{matrix}\right.\)

\(\Delta\left(1\right)=81-4\left(-4\right)\cdot9=225\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{9-15}{18}\\x=\dfrac{9+15}{18}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=1\left(N\right)\\x=-\dfrac{1}{3}\left(L\right)\\x=\dfrac{4}{3}\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{4}{3}\end{matrix}\right.\)

a: Ta có: \(\sqrt{1-x^2}=x-1\)

\(\Leftrightarrow1-x^2=x-1\)

\(\Leftrightarrow1-x^2-x+1=0\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

b: Ta có: \(\sqrt{x^2+4x+4}=x-2\)

\(\Leftrightarrow\left|x+2\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\left(x\ge-2\right)\\x+2=2-x\left(x< -2\right)\end{matrix}\right.\Leftrightarrow2x=0\)

hay x=0(loại)