a, cos4x + 12sin2x -1 = 0
b, cos4x - sin4x + cos4x = 0
c, 5.(sinx + \(\dfrac{cos3x+sin3x}{1+2sin2x}\) ) = 3 + cos2x với mọi x\(\in\left(0;2\pi\right)\)
d, \(\dfrac{sin3x}{3}=\dfrac{sin5x}{5}\)
e, \(\dfrac{sin5x}{5sinx}=1\)
f, cos23x - cos2x - cos2x =0
g, cos4x + sin4x + cos(\(x-\dfrac{\pi}{4}\) ) . sin(\(3x-\dfrac{\pi}{4}\) ) - \(\dfrac{3}{2}\) = 0
h, sin\(\left(2x+\dfrac{5\pi}{2}\right)\) - 3cos\(\left(x-\dfrac{7\pi}{2}\right)\)= 1 + 2sinx với...
Đọc tiếp
a, cos4x + 12sin2x -1 = 0
b, cos4x - sin4x + cos4x = 0
c, 5.(sinx + \(\dfrac{cos3x+sin3x}{1+2sin2x}\) ) = 3 + cos2x với mọi x\(\in\left(0;2\pi\right)\)
d, \(\dfrac{sin3x}{3}=\dfrac{sin5x}{5}\)
e, \(\dfrac{sin5x}{5sinx}=1\)
f, cos23x - cos2x - cos2x =0
g, cos4x + sin4x + cos(\(x-\dfrac{\pi}{4}\) ) . sin(\(3x-\dfrac{\pi}{4}\) ) - \(\dfrac{3}{2}\) = 0
h, sin\(\left(2x+\dfrac{5\pi}{2}\right)\) - 3cos\(\left(x-\dfrac{7\pi}{2}\right)\)= 1 + 2sinx với x\(\in\left(\dfrac{\pi}{2};2\pi\right)\)
i, 5sinx - 2 = 3.( 1- sinx ) . tan3x
k, ( sin2x + \(\sqrt{3}cos2x\))2 - 5 = cos \(\left(2x-\dfrac{\pi}{6}\right)\)
l, \(\dfrac{2.\left(cos^6x+sin^6x\right)-sinx.cosx}{\sqrt{2}-2sinx}=0\)
m, \(\dfrac{\left(1+sinx+cos2x\right).sin\left(x+\dfrac{\pi}{4}\right)}{1+tanx}=\dfrac{1}{\sqrt{2}}cosx\)
Mọi người giúp mình nha ! Mình cần gấp cho ngày mai
1.
\(2cos4x-3=0\)
\(\Leftrightarrow cos4x=\dfrac{3}{2}\)
Mà \(cos4x\in\left[-1;1\right]\)
\(\Rightarrow\) phương trình vô nghiệm.
2.
\(cos5x+2=0\)
\(\Leftrightarrow cos5x=-2\)
Mà \(cos5x\in\left[-1;1\right]\)
\(\Rightarrow\) phương trình vô nghiệm.
3.
\(cos2x+0,7=0\)
\(\Leftrightarrow cos2x=-\dfrac{7}{10}\)
\(\Leftrightarrow2x=\pm arccos\left(-\dfrac{7}{10}\right)+k2\pi\)
\(\Leftrightarrow x=\pm\dfrac{arccos\left(-\dfrac{7}{10}\right)}{2}+k\pi\)
4.
\(cos^22x-\dfrac{1}{4}=0\)
\(\Leftrightarrow cos^22x=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-\dfrac{1}{2}\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\pm\dfrac{2\pi}{3}+k2\pi\\2x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k\pi\\x=\pm\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)