Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:x\ge1\\ PT\Leftrightarrow x-1+5x-1-2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x-2\\ \Leftrightarrow2\sqrt{5x^2-6x+1}=3x\\ \Leftrightarrow4\left(5x^2-6x+1\right)=9x^2\\ \Leftrightarrow11x^2-24x-4=0\\ \Leftrightarrow\left(x-2\right)\left(11x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=\dfrac{2}{11}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=2\)
\(b,ĐK:-1\le x\le1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{1-x}=a\\\sqrt{1+x}=b\end{matrix}\right.\left(a,b\ge0\right)\), PTTT:
\(a+b=ab+1\\ \Leftrightarrow\left(b-1\right)-a\left(b-1\right)=0\\ \Leftrightarrow\left(1-a\right)\left(b-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}1-x=1\\1+x=1\end{matrix}\right.\Leftrightarrow x=0\left(tm\right)\)
ĐK : x >= 2
\(x-\frac{7}{4}-\sqrt{x-2}=0\Leftrightarrow x-\frac{7}{4}=\sqrt{x-2}\)
\(\Leftrightarrow4x-7=4\sqrt{x-2}\Leftrightarrow16x^2-56x+49=16x-32\)
\(\Leftrightarrow16x^2-72x+81=0\Leftrightarrow\left(4x-9\right)^2=0\Leftrightarrow x=\frac{9}{4}\left(tm\right)\)
a)
5x2−3x=0⇔x(5x−3)=05x2−3x=0⇔x(5x−3)=0
⇔ x = 0 hoặc 5x – 3 =0
⇔ x = 0 hoặc x=35.x=35. Vậy phương trình có hai nghiệm: x1=0;x2=35x1=0;x2=35
Δ=(−3)2−4.5.0=9>0√Δ=√9=3x1=3+32.5=610=35x2=3−32.5=010=0Δ=(−3)2−4.5.0=9>0Δ=9=3x1=3+32.5=610=35x2=3−32.5=010=0
b)
3√5x2+6x=0⇔3x(√5x+2)=035x2+6x=0⇔3x(5x+2)=0
⇔ x = 0 hoặc √5x+2=05x+2=0
⇔ x = 0 hoặc x=−2√55x=−255
Vậy phương trình có hai nghiệm: x1=0;x2=−2√55x1=0;x2=−255
Δ=62−4.3√5.0=36>0√Δ=√36=6x1=−6+62.3√5=06√5=0x2=−6−62.3√5=−126√5=−2√55Δ=62−4.35.0=36>0Δ=36=6x1=−6+62.35=065=0x2=−6−62.35=−1265=−255
c)
2x2+7x=0⇔x(2x+7)=02x2+7x=0⇔x(2x+7)=0
⇔ x = 0 hoặc 2x + 7 = 0
⇔ x = 0 hoặc x=−72x=−72
Vậy phương trình có hai nghiệm: x1=0;x2=−72x1=0;x2=−72
Δ=72−4.2.0=49>0√Δ=√49=7x1=−7+72.2=04=0x2=−7−72.2=−144=−72Δ=72−4.2.0=49>0Δ=49=7x1=−7+72.2=04=0x2=−7−72.2=−144=−72
d)
2x2−√2x=0⇔x(2x−√2)=02x2−2x=0⇔x(2x−2)=0
⇔ x = 0 hoặc 2x−√2=02x−2=0
⇔ x = 0 hoặc x=√22x=22
Δ=(−√2)2−4.2.0=2>0√Δ=√2x1=√2+√22.2=2√24=√22x2=√2−√22.2=04=0
\(a,3-\sqrt{1-16x^2}\)
\(=3-\sqrt{-\left(16x^2-1\right)}\)
\(=3-\sqrt{-\left(4x-1\right)\left(4x+1\right)}\)
Căn thức xác định khi \(\sqrt{-\left(4x-1\right)\left(4x+1\right)\ge0}\)
\(\Rightarrow\left(4x-1\right)\left(4x+1\right)\le0\)
.....
\(b,\sqrt{2x^2-6}\)
\(=\sqrt{2\left(x^2-3\right)}\)
\(=\sqrt{2\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}\)
Để căn thức xác định \(\Rightarrow\sqrt{2\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}\ge0\)
\(\Rightarrow\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)\ge0\)
.....
xy - 2x - 3y + 1 = 0
<=> x(y - 2) = 3y - 1
<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)
Để x nguyên thì (y - 2) phải là ước của 5 hay
(y - 2) = (1, 5, - 1, - 5)
Giải tiếp sẽ ra
\(a,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow\sqrt{x+1}-2+\sqrt{2x+3}-3=0\\ \Leftrightarrow\dfrac{x-3}{\sqrt{x+1}+2}+\dfrac{2\left(x-3\right)}{\sqrt{2x+3}+3}=0\\ \Leftrightarrow\left(x-3\right)\left(\dfrac{1}{\sqrt{x+1}+2}+\dfrac{2}{\sqrt{2x+3}+3}\right)=0\)
Dễ thấy ngoặc lớn luôn >0
Do đó \(x-3=0\Leftrightarrow x=3\)
\(b,ĐK:x\le-1\\ PT\Leftrightarrow\sqrt{3x^2+4x+1}=x-1\\ \Leftrightarrow3x^2+4x+1=x^2-2x+1\\ \Leftrightarrow2x^2+6x=0\\ \Leftrightarrow2x\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-3\left(tm\right)\end{matrix}\right.\)
a.
ĐKXĐ: \(x\ge-1\)
\(\sqrt{x+1}+\sqrt{2x+3}=5\)
\(\Leftrightarrow\sqrt{x+1}-2+\sqrt{2x+3}-3=0\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{x+1}+2}+\dfrac{2\left(x-3\right)}{\sqrt{2x+3}+3}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{\sqrt{x+1}+2}+\dfrac{2}{\sqrt{2x+3}+3}\right)=0\)
\(\Leftrightarrow x-3=0\) (do \(\dfrac{1}{\sqrt{x+1}+2}+\dfrac{2}{\sqrt{2x+3}+3}>0\))
\(\Leftrightarrow x=3\)