K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

\(a,3^{x+2}=7\\ \Leftrightarrow x+2=log_37\\ \Leftrightarrow x=log_37-2\approx-0.229\)

\(b,3\cdot10^{2x+1}=5\\ \Leftrightarrow10^{2x+1}=\dfrac{5}{3}\\ \Leftrightarrow2x+1=log\left(\dfrac{5}{3}\right)\\ \Leftrightarrow2x=log\left(\dfrac{5}{3}\right)-1\\ \Leftrightarrow x=\dfrac{1}{2}\cdot log\dfrac{5}{3}-\dfrac{1}{2}\\ \Leftrightarrow x\approx-0,389\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Bấm liên tiếp nút SHIFT, nút SIN, nút 0, nút . , nút 2, nút =

Ta được kết quả gần đúng là 11,537.

Vậy phương trình \(\sin x = 0,2\) có các nghiệm là :

\(x \approx 11,537 + k2\pi ,k \in Z\) và \(x \approx \pi  - 11,537 + k2\pi ,k \in Z\)

b) Bấm liên tiếp nút SHIFT, nút COS, nút -, nút 1 , nút : ,nút 5;  nút =

Ta được kết quả gần đúng là 101,537.

Vậy phương trình \(\cos x =  - \frac{1}{5}\) có các nghiệm là :

\(x \approx 101,537 + k2\pi ,k \in Z\) và \(x \approx  - 101,537 + k2\pi ,k \in Z\)

c) Bấm liên tiếp nút SHIFT, nút TAN, nút căn , nút 2 , nút =

Ta được kết quả gần đúng là 54,736.

Vậy phương trình \(\tan x = \sqrt 2 \) có các nghiệm là :

\(x \approx 54,736 + k\pi ,k \in Z\)

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Xét phương trình \(\left| {17cos5\pi t} \right| = 10\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}17cos5\pi t = 10\\17cos5\pi t =-10\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}cos5\pi t = \frac{{10}}{{17}}\\cos5\pi t = -\frac{{10}}{{17}}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}5\pi t =  \pm 0,9 + k2\pi \\5\pi t =  \pm 2,2 + k2\pi \end{array} \right.\left( {k\; \in \;\mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}t =  \pm 0,06 + k\frac{2}{5}\\t =  \pm 0,14 + k\frac{2}{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Độ dài bóng \(|x|\;\)bằng 10 cm tại các thời điểm \(t =  \pm 0,06 + k\frac{2}{5}\),\(t =  \pm 0,14 + k\frac{2}{5}\),\(k \in \mathbb{Z}\).

a: \(2^{x^2-2x+1}=1\)

=>\(2^{\left(x-1\right)^2}=2^0\)

=>\(\left(x-1\right)^2=0\)

=>x-1=0

=>x=1

b: \(7^{x^2+7x}=5764801\)

=>\(7^{x^2+7x}=7^8\)

=>\(x^2+7x=8\)

=>\(x^2+7x-8=0\)

=>(x+8)(x-1)=0

=>\(\left[{}\begin{matrix}x+8=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\)

c: \(6^{x^2+12x}=6^{7x}\)

=>\(x^2+12x=7x\)

=>\(x^2+5x=0\)

=>x(x+5)=0

=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

d: \(\left(\dfrac{1}{3}\right)^{x-1}=3^{2x-5}\)

=>\(3^{-x+1}=3^{2x-5}\)

=>-x+1=2x-5

=>-x-2x=-5-1

=>-3x=-6

=>x=2

e: \(\left(\dfrac{1}{5}\right)^{3x+5}=5^{2x+1}\)

=>\(5^{-3x-5}=5^{2x+1}\)

=>-3x-5=2x+1

=>-5x=6

=>\(x=-\dfrac{6}{5}\)

9 tháng 4 2017

a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.

Đặt t = tanx thì phương trình này trở thành

2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.

Vậy

b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành

3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x

⇔ sin2x - 4sinxcosx + 3cos2x = 0

⇔ tan2x - 4tanx + 3 = 0

⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.

c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương

sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔

⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.

d) 2cos2x - 3√3sin2x - 4sin2x = -4

⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0

⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0


9 tháng 4 2017

a) Đặt t = cosx, t ∈ [-1 ; 1] ta được phương trình 2t2 - 3t + 1 = 0 ⇔ t ∈ {1 ; }.

Nghiệm của phương trình đã cho là các nghiệm của hai phương trình sau:

cosx = 1 ⇔ x = k2π và cosx = ⇔ x = + k2π.

Đáp số : x = k2π ; x = + k2π, k ∈ Z.

b) Ta có sin4x = 2sin2xcos2x (công thức nhân đôi), do đó phương trình đã cho tương đương với

2sin2x(1 + √2cos2x) = 0 ⇔


17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

18 tháng 9 2016

cây a) bạn xét 2 TH :

  •  cosx=0<=> x= pi/2+k.pi.  k là nghiệm pt
  • cosx khác 0. chia 2 vế cho cosx^2 ta được pt bậc hai với hàm tan rồi giải ra như bình thường

b) bạn sd công thức hạ bậc là xong r

18 tháng 9 2016

hmm, giống mạng qué