Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình \(\left| {17cos5\pi t} \right| = 10\)
\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}17cos5\pi t = 10\\17cos5\pi t =-10\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}cos5\pi t = \frac{{10}}{{17}}\\cos5\pi t = -\frac{{10}}{{17}}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}5\pi t = \pm 0,9 + k2\pi \\5\pi t = \pm 2,2 + k2\pi \end{array} \right.\left( {k\; \in \;\mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}t = \pm 0,06 + k\frac{2}{5}\\t = \pm 0,14 + k\frac{2}{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)
Độ dài bóng \(|x|\;\)bằng 10 cm tại các thời điểm \(t = \pm 0,06 + k\frac{2}{5}\),\(t = \pm 0,14 + k\frac{2}{5}\),\(k \in \mathbb{Z}\).
a: \(2^{x^2-2x+1}=1\)
=>\(2^{\left(x-1\right)^2}=2^0\)
=>\(\left(x-1\right)^2=0\)
=>x-1=0
=>x=1
b: \(7^{x^2+7x}=5764801\)
=>\(7^{x^2+7x}=7^8\)
=>\(x^2+7x=8\)
=>\(x^2+7x-8=0\)
=>(x+8)(x-1)=0
=>\(\left[{}\begin{matrix}x+8=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\)
c: \(6^{x^2+12x}=6^{7x}\)
=>\(x^2+12x=7x\)
=>\(x^2+5x=0\)
=>x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d: \(\left(\dfrac{1}{3}\right)^{x-1}=3^{2x-5}\)
=>\(3^{-x+1}=3^{2x-5}\)
=>-x+1=2x-5
=>-x-2x=-5-1
=>-3x=-6
=>x=2
e: \(\left(\dfrac{1}{5}\right)^{3x+5}=5^{2x+1}\)
=>\(5^{-3x-5}=5^{2x+1}\)
=>-3x-5=2x+1
=>-5x=6
=>\(x=-\dfrac{6}{5}\)
a) Bấm liên tiếp nút SHIFT, nút SIN, nút 0, nút . , nút 2, nút =
Ta được kết quả gần đúng là 11,537.
Vậy phương trình \(\sin x = 0,2\) có các nghiệm là :
\(x \approx 11,537 + k2\pi ,k \in Z\) và \(x \approx \pi - 11,537 + k2\pi ,k \in Z\)
b) Bấm liên tiếp nút SHIFT, nút COS, nút -, nút 1 , nút : ,nút 5; nút =
Ta được kết quả gần đúng là 101,537.
Vậy phương trình \(\cos x = - \frac{1}{5}\) có các nghiệm là :
\(x \approx 101,537 + k2\pi ,k \in Z\) và \(x \approx - 101,537 + k2\pi ,k \in Z\)
c) Bấm liên tiếp nút SHIFT, nút TAN, nút căn , nút 2 , nút =
Ta được kết quả gần đúng là 54,736.
Vậy phương trình \(\tan x = \sqrt 2 \) có các nghiệm là :
\(x \approx 54,736 + k\pi ,k \in Z\)
a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\) (ĐK: \(x + 1 > 0;2 - x > 0 \Leftrightarrow - 1 < x < 2\))
\(\begin{array}{l} \Leftrightarrow {\log _{{7^{ - 1}}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow - {\log _7}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\log _7}{\left( {x + 1} \right)^{ - 1}} > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\left( {x + 1} \right)^{ - 1}} > 2 - x\\ \Leftrightarrow \frac{1}{{x + 1}} - 2 + x > 0\\ \Leftrightarrow \frac{{1 + \left( {x - 2} \right)\left( {x + 1} \right)}}{{x + 1}} > 0\\ \Leftrightarrow \frac{{1 + {x^2} - x - 2}}{{x + 1}} > 0 \Leftrightarrow \frac{{{x^2} - x - 1}}{{x + 1}} > 0\end{array}\)
Mà – 1 < x < 2 nên x + 1 > 0
\( \Leftrightarrow {x^2} - x - 1 > 0 \Leftrightarrow \left[ \begin{array}{l}x < \frac{{1 - \sqrt 5 }}{2}\\x > \frac{{1 + \sqrt 5 }}{2}\end{array} \right.\)
KHĐK ta có \(\left[ \begin{array}{l} - 1 < x < \frac{{1 - \sqrt 5 }}{2}\\\frac{{1 + \sqrt 5 }}{2} < x < 2\end{array} \right.\)
b) \(2\log \left( {2x + 1} \right) > 3\) (ĐK: \(2x + 1 > 0 \Leftrightarrow x > \frac{{ - 1}}{2}\))
\(\begin{array}{l} \Leftrightarrow \log \left( {2x + 1} \right) > \frac{3}{2}\\ \Leftrightarrow 2x + 1 > {10^{\frac{3}{2}}} = 10\sqrt {10} \\ \Leftrightarrow x > \frac{{10\sqrt {10} - 1}}{2}\end{array}\)
KHĐK ta có \(x > \frac{{10\sqrt {10} - 1}}{2}\)
a: \(log\left(x-2\right)< 3\)
=>\(\left\{{}\begin{matrix}x-2>0\\log\left(x-2\right)< log9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2>0\\x-2< 9\end{matrix}\right.\Leftrightarrow2< x< 11\)
b: \(log_2\left(2x-1\right)>3\)
=>\(\left\{{}\begin{matrix}2x-1>0\\log_2\left(2x-1\right)>log_29\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-1>0\\2x-1>9\end{matrix}\right.\Leftrightarrow2x-1>9\)
=>2x>10
=>x>5
c: \(log_3\left(-x-1\right)< =2\)
=>\(\left\{{}\begin{matrix}-x-1>0\\log_3\left(-x-1\right)< =log_39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x-1>0\\-x-1< =9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>1\\-x< =10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -1\\x>=-10\end{matrix}\right.\Leftrightarrow-10< =x< -1\)
d: \(log_2\left(2x-3\right)>=2\)
=>\(\left\{{}\begin{matrix}2x-3>0\\log_2\left(2x-3\right)>=log_24\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>=4\end{matrix}\right.\)
=>2x-3>=4
=>2x>=7
=>\(x>=\dfrac{7}{2}\)
e: \(log_3\left(2x-7\right)>2\)
=>\(\left\{{}\begin{matrix}2x-7>0\\log_3\left(2x-7\right)>log_39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>\dfrac{7}{2}\\2x-7>9\end{matrix}\right.\)
=>2x-7>9
=>2x>16
=>x>8
a.
\(log\left(x-2\right)< 3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x-2< 10^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 1002\end{matrix}\right.\) \(\Rightarrow2< x< 1002\)
b.
\(log_2\left(2x-1\right)>3\Leftrightarrow\left\{{}\begin{matrix}2x-1>0\\2x-1>2^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{9}{2}\)
c.
\(log_3\left(-x-1\right)\le2\Rightarrow\left\{{}\begin{matrix}-x-1>0\\-x-1\le3^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x\ge-10\end{matrix}\right.\) \(\Rightarrow-10\le x< -1\)
d.
\(log_2\left(2x-3\right)\ge2\Leftrightarrow\left\{{}\begin{matrix}2x-3>0\\2x-3\ge2^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x>\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{7}{2}\)
e,
\(log_3\left(2x-7\right)>2\Leftrightarrow\left\{{}\begin{matrix}2x-7>0\\2x-7>3^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{2}\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)
\(a,3^{x-1}=27\\ \Leftrightarrow3^{x-1}=3^3\\ \Leftrightarrow x-1=3\\ \Leftrightarrow x=4\\ b,100^{2x^2-3}=0,1^{2x^2-18}\\ \Leftrightarrow10^{4x^2-6}=10^{-2x^2+18}\\ \Leftrightarrow4x^2-6=-2x^2+18\\ \Leftrightarrow6x^2=24\\ \Leftrightarrow x^2=4\\ \Leftrightarrow x=\pm2\)
\(c,\sqrt{3}e^{3x}=1\\ \Leftrightarrow e^{3x}=\dfrac{1}{\sqrt{3}}\\ \Leftrightarrow3x=ln\left(\dfrac{1}{\sqrt{3}}\right)\\ \Leftrightarrow x=\dfrac{1}{3}ln\left(\dfrac{1}{\sqrt{3}}\right)\)
\(d,5^x=3^{2x-1}\\ \Leftrightarrow2x-1=log_35^x\\ \Leftrightarrow2x-1-xlog_35=0\\ \Leftrightarrow x\left(2-log_35\right)=1\\ \Leftrightarrow x=\dfrac{1}{2-log_35}\)
\(a,0,1^{2-x}>0,1^{4+2x}\\ \Leftrightarrow2-x>2x+4\\ \Leftrightarrow3x< -2\\ \Leftrightarrow x< -\dfrac{2}{3}\)
\(b,2\cdot5^{2x+1}\le3\\ \Leftrightarrow5^{2x+1}\le\dfrac{3}{2}\\ \Leftrightarrow2x+1\le log_5\left(\dfrac{3}{2}\right)\\ \Leftrightarrow2x\le log_5\left(\dfrac{3}{2}\right)-1\\ \Leftrightarrow x\le\dfrac{1}{2}log_5\left(\dfrac{3}{2}\right)-\dfrac{1}{2}\\ \Leftrightarrow x\le log_5\left(\dfrac{\sqrt{30}}{10}\right)\)
c, ĐK: \(x>-7\)
\(log_3\left(x+7\right)\ge-1\\ \Leftrightarrow x+7\ge\dfrac{1}{3}\\ \Leftrightarrow x\ge-\dfrac{20}{3}\)
Kết hợp với ĐKXĐ, ta có:\(x\ge-\dfrac{20}{3}\)
d, ĐK: \(x>\dfrac{1}{2}\)
\(log_{0,5}\left(x+7\right)\ge log_{0,5}\left(2x-1\right)\\ \Leftrightarrow x+7\le2x-1\\ \Leftrightarrow x\ge8\)
Kết hợp với ĐKXĐ, ta được: \(x\ge8\)
\(a,5^{2x-1}=25\\ \Leftrightarrow5^{2x-1}=5^2\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\)
\(b,3^{x+1}=9^{2x+1}\\ \Leftrightarrow3^{x+1}=3^{4x+2}\\ \Leftrightarrow x+1=4x+2\\ \Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\)
\(c,10^{1-2x}=100000\\ \Leftrightarrow10^{1-2x}=10^5\\ \Leftrightarrow1-2x=5\\ \Leftrightarrow2x=-4\\ \Leftrightarrow x=-2\)
\(a,3^{x+2}=7\\ \Leftrightarrow x+2=log_37\\ \Leftrightarrow x=log_37-2\approx-0.229\)
\(b,3\cdot10^{2x+1}=5\\ \Leftrightarrow10^{2x+1}=\dfrac{5}{3}\\ \Leftrightarrow2x+1=log\left(\dfrac{5}{3}\right)\\ \Leftrightarrow2x=log\left(\dfrac{5}{3}\right)-1\\ \Leftrightarrow x=\dfrac{1}{2}\cdot log\dfrac{5}{3}-\dfrac{1}{2}\\ \Leftrightarrow x\approx-0,389\)