Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>|x-7|=3-2x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(-2x+3\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+7\right)\left(2x-3+x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x+4\right)\left(3x-10\right)=0\end{matrix}\right.\Leftrightarrow x=-4\)
b: =>|2x-3|=4x+9
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(4x+9-2x+3\right)\left(4x+9+2x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(2x+12\right)\left(6x+6\right)=0\end{matrix}\right.\Leftrightarrow x=-1\)
c: =>3x+5=2-5x hoặc 3x+5=5x-2
=>8x=-3 hoặc -2x=-7
=>x=-3/8 hoặc x=7/2
a.\(\left|x-3\right|=4x+1\)
\(ĐK:4x+1\ge0\Leftrightarrow4x\ge-1\Leftrightarrow x\ge\dfrac{-1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4x+1\\x-3=-4x-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4x=1+3\\x+4x=-1+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x=4\\5x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4}{3}\left(ktm\right)\\x=\dfrac{2}{5}\left(tm\right)\end{matrix}\right.\)
Vay S \(=\left\{\dfrac{2}{5}\right\}\)
b. \(\left|x-2\right|+2x=10\\ \Leftrightarrow\left|x-2\right|=10-2x\)
ĐK : \(10-2x\ge0\Leftrightarrow-2x\ge-10\Leftrightarrow x\le5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=10-2x\\x-2=2x-10\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+2x=10+2\\x-2x=-10+2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=12\\-x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=8\left(ktm\right)\end{matrix}\right.\)
Vay S \(=\left\{4\right\}\)
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
TA CÓ:
\(a,\left(4x-1\right)\left(x-3\right)=\left(x-3\right)\left(5x+2\right)\Leftrightarrow\left(4x-1\right)\left(x-3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\left(x-3\right)\left(4x-1-5x-2\right)=0\Leftrightarrow\left(x-3\right)\left(-x-3\right)=0\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
\(b,\left(x+3\right)\left(x-5\right)+\left(x+3\right)\left(3x-4\right)=0\Leftrightarrow\left(x+3\right)\left(x-5+3x-4\right)=0\)
\(\left(x-3\right)\left(4x-9\right)=0\orbr{\begin{cases}x=3\\x=\frac{9}{4}\end{cases}}\)
\(c,\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\Leftrightarrow\left(1-x\right)\left(5x+3\right)=\left(7-3x\right)\left(1-x\right)\)
\(\left(1-x\right)\left(5x+3-7+3x\right)=0\Leftrightarrow\left(1-x\right)\left(8x-4\right)=0\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
1a.
ĐKXĐ: \(x\ne\left\{1;3\right\}\)
\(\Leftrightarrow\dfrac{6}{x-1}=\dfrac{4}{x-3}+\dfrac{4}{x-3}\)
\(\Leftrightarrow\dfrac{3}{x-1}=\dfrac{4}{x-3}\Leftrightarrow3\left(x-3\right)=4\left(x-1\right)\)
\(\Leftrightarrow3x-9=4x-4\Rightarrow x=-5\)
b.
ĐKXĐ: \(x\ne\left\{-1;2\right\}\)
\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{3}{2-x}+\dfrac{1}{2-x}\)
\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{4}{2-x}\Leftrightarrow5\left(2-x\right)=4\left(x+1\right)\)
\(\Leftrightarrow10-2x=4x+4\Leftrightarrow6x=6\Rightarrow x=1\)
1c.
ĐKXĐ: \(x\ne\left\{2;5\right\}\)
\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{-3x}{\left(x-2\right)\left(x-5\right)}\)
\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)=-3x\)
\(\Leftrightarrow2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\left(loại\right)\end{matrix}\right.\)
2a.
\(\Leftrightarrow-4x^2-5x+6=x^2+4x+4\)
\(\Leftrightarrow5x^2+9x-2=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)
2b.
\(2x^2-6x+1=0\Rightarrow x=\dfrac{3\pm\sqrt{7}}{2}\)
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)
a: Ta có: \(4x-2\left(1-x\right)=5\left(x-4\right)\)
\(\Leftrightarrow4x-2+2x=5x-20\)
\(\Leftrightarrow x=-18\)
b: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)
\(\Leftrightarrow6x+4\left(1-3x\right)=3\left(-x+1\right)\)
\(\Leftrightarrow6x+4-12x=-3x+3\)
\(\Leftrightarrow-3x=-1\)
hay \(x=\dfrac{1}{3}\)
c: Ta có: \(\left(x+2\right)^2-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Lời giải :
a) \(x\left(x+2\right)=x\left(x+3\right)\)
\(\Leftrightarrow x\left(x+2\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x+2-x-3\right)=0\)
\(\Leftrightarrow x\cdot\left(-1\right)=0\)
\(\Leftrightarrow x=0\)
b) \(x\left(x+1\right)+x\left(x-3\right)=4x\)
\(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)-4x=0\)
\(\Leftrightarrow x\left(x+1+x-3-4\right)=0\)
\(\Leftrightarrow x\left(2x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy....
a) \(x\left(x+2\right)=x\left(x+3\right)\)
\(\Leftrightarrow x\left(x+2\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow x\left[\left(x+2\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x.\left(-1\right)=0\)
\(\Leftrightarrow x=0\)