\(X^4-3X^3-6X+4=0\)

B) ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

2x3 + 3x2 + 6x + 5 = 02

<=> 2x3 + x2 + 5x + 2x2 + x + 5 = 0

<=> x(2x2 + x + 5) + (2x2 + x + 5) = 0

<=> (2x2 + x + 5)(x + 1) = 0

<=> x + 1 = 0 (vì 2x2 + x + 5 \(\ge\) 4,875 > 0 \(\forall\) x)

<=> x = - 1

Vậy tập nghiệm của pt là \(S=\left\{-1\right\}\)

25 tháng 1 2017

b) 4x4 + 12x3 + 5x2 - 6x - 15 = 0

<=> 4x4 + 10x3 + 2x3 + 5x2 - 6x - 15 = 0

<=> 2x3(2x + 5) + x2(2x + 5) - 3(2x + 5) = 0

<=> (2x + 5)(2x3 + x2 - 3) = 0

<=> (2x + 5)(2x3 - 2x2 + 3x2 - 3) = 0

<=> (2x + 5)(x - 1)(2x2 + 3x + 3) = 0

<=> (2x + 5)(x - 1)[x2 + (x + 3/2)2 + 3/4]= 0

Mà x2 + (x + 3/2)2 + 3/4 > 0\(\forall x\)

\(\Rightarrow\left[\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-\frac{5}{2}\\x=1\end{matrix}\right.\)

Vậy ...

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

18 tháng 5 2017

giải đc sao pn dễ mk

19 tháng 5 2017

chẳng ai giải, thôi mình giải vậy!

a) Đặt \(y=x^2+4x+8\),phương trình có dạng:

\(t^2+3x\cdot t+2x^2=0\)

\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)

\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}

b) nhân 2 vế của phương trình với 12 ta được:

\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)

Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)

giải tiếp ra ta sẽ được S={-2/3;-5/3}

c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)

S={3;5}

d)s={1}

e) S={1;-2;-1/2}

f) phương trình vô nghiệm

25 tháng 6 2018

\(x^3+9x=0\)

<=> \(x\left(x^2+9\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x^2+9=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\)

<=> \(x=0\)

\(9x^2-4-2\left(3x-2\right)^2=0\)

<=> \(\left(9x^2-4\right)-2\left(3x-2\right)^2=0\)

<=> \(\left[\left(3x\right)^2-2^2\right]-2\left(3x-2\right)^2=0\)

<=> \(\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)

<=> \(\left(3x-2\right)\left[\left(3x+2\right)-2\left(3x-2\right)\right]=0\)

<=> \(\left(3x-2\right)\left(3x+2-6x+4\right)=0\)

<=> \(\left(3x-2\right)\left(-3x+6\right)=0\)

<=> \(\left(3x-2\right)3\left(-x+2\right)=0\)

<=> \(3\left(3x-2\right)\left(2-x\right)=0\)

<=> \(\orbr{\begin{cases}3x-2=0\\2-x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)

\(\left(x^3-x^2\right)-4x+8x-4=0\)

<=> \(\left(x^3-x^2\right)+\left(4x-4\right)=0\)

<=> \(x^2\left(x-1\right)+4\left(x-1\right)=0\)

<=> \(\left(x-1\right)\left(x^2+4\right)=0\)

<=> \(\orbr{\begin{cases}x-1=0\\x^2+4=0\end{cases}}\)

<=> \(x=1\)

\(\left(25x^2-10x\right):\left(-5x\right)-3\left(x-2\right)=4\)

<=> \(5x\left(5x-2\right)\left(-\frac{1}{5x}\right)-3\left(x-2\right)=4\)

<=> \(-\left(5x-2\right)-3\left(x-2\right)=4\)

<=> \(\left(5x-2\right)+3\left(x-2\right)=-4\)

<=> \(5x-2+3x-6=-4\)

<=> \(8x-8=-4\)

<=> \(8\left(x-1\right)=-4\)

<=> \(x-1=-\frac{1}{2}\)

<=> \(x=-\frac{3}{2}\)

26 tháng 3 2017

a) ta có :x2+2x+2=(x+1)2+1>0,với mọi x

x2+2x+3=(x+1)2+2>0,với mọi x

ĐKXĐ:x\(\in\)R.Đặt x2+2x+2=a (a>0),ta có:\(\dfrac{a-1}{a}+\dfrac{a}{a+1}=\dfrac{7}{6}\)

<=>\(\dfrac{6\left(a-1\right)\left(a+1\right)}{6a\left(a+1\right)}+\dfrac{6a^2}{6a\left(a+1\right)}=\dfrac{7a\left(a+1\right)}{6a\left(a+1\right)}\)

=>6(a2-1)+6a2=7a2+7a<=>6a2-6+6a2=7a2+7a<=>12a2-7a2-7a-6=0

<=>5a2-7a-6=0<=>(a-2)(5a+3)=0<=>a-2=0(vì a>0,nên 5a+3>0)

<=>a=2=>x2+2x+2=2<=>x(x+2)=0<=>\(|^{x=0}_{x+2=0< =>x=-2}\)

Vậy tặp nghiệm của PT là S\(=\left\{0;-2\right\}\)

20 tháng 1 2019

a) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+5x^2-10x+2x-4=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\left(x-2\right)+5x\left(x-2\right)+2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+x^2+3x^2+3x+2x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+2\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+2x+x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)^2\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{2;-1;-2\right\}\)

Vậy....

20 tháng 1 2019

c, \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2\left(x^3+1\right)+7x\left(x+1\right)=0\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[2\left(x^2-x+1\right)+7x\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)

Tập nghiệm của pt: \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)

b, \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\) (1)

Đặt: \(x^2-7=t\left(t\ge-7\right)\)

Khi đó (1) trở thành: \(\left(t+3\right)\left(t-3\right)=72\Leftrightarrow t^2-9=72\Leftrightarrow\orbr{\begin{cases}t=9\\t=-9\left(loai\right)\end{cases}}\)

\(t=9\Rightarrow x^2-7=9\Leftrightarrow x=\pm4\)

Tập nghiệm của pt là \(S=\left\{\pm4\right\}\)

a, \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^3\left(x+1\right)+x^2\left(x+1\right)-4x\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm2\end{cases}}\)

28 tháng 5 2017

a) (x-1)(5x+3)=(3x-8)(x-1)

= (x-1)(5x+3)-(3x-8)(x-1)=0

=(x-1)[(5x+3)-(3x-8)]=0

=(x-1)(5x+3-3x+8)=0

=(x-1)(2x+11)=0

\(\Leftrightarrow\) x-1=0 hoặc 2x+11=0

\(\Leftrightarrow\) x=1 hoặc x=\(\dfrac{-11}{2}\)

Vậy S={1;\(\dfrac{-11}{2}\)}

b) 3x(25x+15)-35(5x+3)=0

=3x.5(5x+3)-35(5x+3)=0

=15x(5x+3)-35(5x+3)=0

=(5x+3)(15x-35)=0

\(\Leftrightarrow\) 5x+3=0 hoặc 15x-35=0

\(\Leftrightarrow\) x=\(\dfrac{-3}{5}\) hoặc x=\(\dfrac{7}{3}\)

Vậy S={\(\dfrac{-3}{5};\dfrac{7}{3}\)}

c) (2-3x)(x+11)=(3x-2)(2-5x)

=(2-3x)(x+11)-(3x-2)(2-5x)=0

=(3x-2)[(x+11)-(2-5x)]=0

=(3x-2)(x+11-2+5x)=0

=(3x-2)(6x+9)=0

\(\Leftrightarrow\) 3x-2=0 hoặc 6x+9=0

\(\Leftrightarrow\) x=\(\dfrac{2}{3}\) hoặc x=\(\dfrac{-3}{2}\)

Vậy S={\(\dfrac{2}{3};\dfrac{-3}{2}\)}

d) (2x2+1)(4x-3)=(2x2+1)(x-12)

=(2x2+1)(4x-3)-(2x2+1)(x-12)=0

=(2x2+1)[(4x-3)-(x-12)=0

=(2x2+1)(4x-3-x+12)=0

=(2x2+1)(3x+9)=0

\(\Leftrightarrow\)2x2+1=0 hoặc 3x+9=0

\(\Leftrightarrow\)x=\(\dfrac{1}{2}\)hoặc x=\(\dfrac{-1}{2}\) hoặc x=-3

Vậy S={\(\dfrac{1}{2};\dfrac{-1}{2};-3\)}

e) (2x-1)2+(2-x)(2x-1)=0

=(2x-1)[(2x-1)+(2-x)=0

=(2x-1)(2x-1+2-x)=0

=(2x-1)(x+1)=0

\(\Leftrightarrow\) 2x-1=0 hoặc x+1=0

\(\Leftrightarrow\) x=\(\dfrac{-1}{2}\) hoặc x=-1

Vậy S={\(\dfrac{-1}{2}\);-1}

f)(x+2)(3-4x)=x2+4x+4

=(x+2)(3-4x)=(x+2)2

=(x+2)(3-4x)-(x+2)2=0

=(x+2)[(3-4x)-(x+2)]=0

=(x+2)(3-4x-x-2)=0

=(x+2)(-5x+1)=0

\(\Leftrightarrow\) x+2=0 hoặc -5x+1=0

\(\Leftrightarrow\) x=-2 hoặc x=\(\dfrac{1}{5}\)

Vậy S={-2;\(\dfrac{1}{5}\)}

27 tháng 2 2020

a)<=>\(\left(x^3+x^2-2x\right)+\left(3x^2+3x-6\right)=0\)

<=>\(x\left(x^2+x-2\right)+3\left(x^2+x-2\right)=0\)

<=>\(\left(x^2+x-2\right)\left(x+3\right)=0\)

Phương trình trên bạn tự bấm máy tính nha

<=>\(\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)

Đến đây tự làm đc rồi

Vậy x=1 hoặc -2 hoặc -3

b)<=>\(\left(x^3-4x^2+4x\right)+\left(x^2-4x+4\right)=0\)

<=>\(x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)

<=>\(\left(x+1\right)\left(x^2-4x+4\right)=0\)

<=>\(\left(x+1\right)\left(x-2\right)^2=0\)

<=>\(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

c)Câu c mik chưa làm đc

27 tháng 2 2020

Đáp án câu C:

\(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x^2+5x\right)=0\)

\(Tacó:x^2-4x+5=x^2-4x+2^2+1\)

                                       \(=\left(x-2\right)^2+1\)

       \(Mà\left(x-2\right)^2\ge0\)

       \(Nên\left(x-2\right)^2+1\ge1\)

\(Khiđó:x\left(x^2-4x+5\right)=0\)

        \(\Leftrightarrow x=0\)